Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Pediatr Neurosurg ; 45(4): 311-6, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19713721

RESUMEN

Magnetoencephalography (MEG) data analyzed with novel spatial filtering methods, namely event-related beamforming (ERB), have shown success in localizing hand motor areas in healthy adults and in a group of pediatric patients with peri-Rolandic tumors. The validity of this method to localize the primary motor field in a pediatric tumor case was confirmed by intraoperative direct cortical stimulation. Currently, the reliability of this method has not been demonstrated. We report on a 16-year-old boy with localization-related epilepsy originating from his right hemisphere sensory cortex. Hand motor and sensory areas were identified preoperatively by ERB analysis of MEG data. The patient underwent invasive monitoring which localized the epileptic focus to right postcentral gyrus, immediately posterior to the MEG motor area and adjacent to the MEG sensory area. The patient received a gyrectomy of sensory cortex guided by intraoperative direct cortical stimulation to ensure sparing of hand motor cortex. Replication of the MEG motor mapping protocol postoperatively demonstrated reliable localization of the motor and sensory areas. We also discuss caveats for future applications of this protocol.


Asunto(s)
Mano/fisiología , Magnetoencefalografía , Corteza Motora/fisiología , Psicocirugía , Adolescente , Epilepsia/fisiopatología , Epilepsia/cirugía , Humanos , Magnetoencefalografía/métodos , Masculino , Monitoreo Intraoperatorio/métodos , Desempeño Psicomotor/fisiología , Psicocirugía/métodos
2.
Sci Total Environ ; 644: 389-397, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-29981988

RESUMEN

A new and environmentally benign photocatalyst is introduced in this study, which was synthesized via incipient wetness impregnation onto MIL-47(V) using an ethanolic Fe(III) chloride solution. The resultant materials were characterized by XRD, FE-SEM, and HR-TEM analyses. The photocatalytic capability of Fe/MIL-47 towards removal of methylene blue (MB) was evaluated in comparison to MIL-53(Al), Cu/MIL-47, and Fe/zeolite-Y. The unmodified MIL-47 achieved 55% MB removal after 20-min exposure to UV/H2O2, through photodegradation as the dominant mechanism. Incorporation of Fe species into MIL-47 significantly increased the MB removal rate by 2.4-fold and accomplished nearly complete removal (98.2%) in 60 min, outcompeting the performance of Cu/MIL-47 and Fe/zeolite-Y. Based on the results of XRD, the impregnation of Fe retained the crystalline characteristics of MIL-47. The significance of temperature, catalyst dose, pH, and molar ratio of H2O2:MB was also evaluated in governing the photocatalytic activity of Fe/MIL-47. The reusability of Fe/MIL-47 was evidenced through its repetitive uses in MB photodegradation. The current work highlighted the potential of Fe impregnation for modification of MOFs in order to fabricate highly efficient and water-stable heterogeneous photocatalyst for degradation of organic pollutants. With the use of an economical and environmentally safe reagent (i.e., Fe), robust photocatalyst can exhibit high sustainability to warrant clean environmental remediation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA