Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 142(1): 65-76, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20603015

RESUMEN

DNA interstrand crosslinks (ICLs) are highly toxic because they block the progression of replisomes. The Fanconi Anemia (FA) proteins, encoded by genes that are mutated in FA, are important for repair of ICLs. The FA core complex catalyzes the monoubiquitination of FANCD2, and this event is essential for several steps of ICL repair. However, how monoubiquitination of FANCD2 promotes ICL repair at the molecular level is unknown. Here, we describe a highly conserved protein, KIAA1018/MTMR15/FAN1, that interacts with, and is recruited to sites of DNA damage by, the monoubiquitinated form of FANCD2. FAN1 exhibits endonuclease activity toward 5' flaps and has 5' exonuclease activity, and these activities are mediated by an ancient VRR_nuc domain. Depletion of FAN1 from human cells causes hypersensitivity to ICLs, defects in ICL repair, and genome instability. These data at least partly explain how ubiquitination of FANCD2 promotes DNA repair.


Asunto(s)
Reparación del ADN , Exodesoxirribonucleasas/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Secuencia de Aminoácidos , Proteínas Reguladoras de la Apoptosis , Proteína BRCA2/metabolismo , Línea Celular , Reactivos de Enlaces Cruzados/farmacología , Daño del ADN/efectos de los fármacos , Endodesoxirribonucleasas , Endonucleasas/química , Endonucleasas/metabolismo , Exodesoxirribonucleasas/química , Humanos , Datos de Secuencia Molecular , Enzimas Multifuncionales , Estructura Terciaria de Proteína , Alineación de Secuencia , Ubiquitinación
2.
EMBO Rep ; 21(3): e48412, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32009292

RESUMEN

The intracellular trafficking pathway, macroautophagy, is a recycling and disposal service that can be upregulated during periods of stress to maintain cellular homeostasis. An essential phase is the elongation and closure of the phagophore to seal and isolate unwanted cargo prior to lysosomal degradation. Human ATG2A and ATG2B proteins, through their interaction with WIPI proteins, are thought to be key players during phagophore elongation and closure, but little mechanistic detail is known about their function. We have identified a highly conserved motif driving the interaction between human ATG2 and GABARAP proteins that is in close proximity to the ATG2-WIPI4 interaction site. We show that the ATG2A-GABARAP interaction mutants are unable to form and close phagophores resulting in blocked autophagy, similar to ATG2A/ATG2B double-knockout cells. In contrast, the ATG2A-WIPI4 interaction mutant fully restored phagophore formation and autophagy flux, similar to wild-type ATG2A. Taken together, we provide new mechanistic insights into the requirements for ATG2 function at the phagophore and suggest that an ATG2-GABARAP/GABARAP-L1 interaction is essential for phagophore formation, whereas ATG2-WIPI4 interaction is dispensable.


Asunto(s)
Autofagosomas , Proteínas de la Membrana , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagosomas/metabolismo , Autofagia , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Transporte de Proteínas , Proteínas de Transporte Vesicular/metabolismo
3.
EMBO Rep ; 20(9): e47495, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31338967

RESUMEN

The concerted action of many protein kinases helps orchestrate the error-free progression through mitosis of mammalian cells. The roles and regulation of some prominent mitotic kinases, such as cyclin-dependent kinases, are well established. However, these and other known mitotic kinases alone cannot account for the extent of protein phosphorylation that has been reported during mammalian mitosis. Here we demonstrate that CK1α, of the casein kinase 1 family of protein kinases, localises to the spindle and is required for proper spindle positioning and timely cell division. CK1α is recruited to the spindle by FAM83D, and cells devoid of FAM83D, or those harbouring CK1α-binding-deficient FAM83DF283A/F283A knockin mutations, display pronounced spindle positioning defects, and a prolonged mitosis. Restoring FAM83D at the endogenous locus in FAM83D-/- cells, or artificially delivering CK1α to the spindle in FAM83DF283A/F283A cells, rescues these defects. These findings implicate CK1α as new mitotic kinase that orchestrates the kinetics and orientation of cell division.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Huso Acromático/metabolismo , Animales , Quinasa de la Caseína I/genética , Ciclo Celular/genética , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Citometría de Flujo , Células HeLa , Humanos , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Mitosis/genética , Mitosis/fisiología
4.
Mol Cell ; 52(2): 221-33, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24076219

RESUMEN

Holliday junctions (HJs) are X-shaped DNA structures that arise during homologous recombination, which must be removed to enable chromosome segregation. The SLX1 and MUS81-EME1 nucleases can both process HJs in vitro, and they bind in close proximity on the SLX4 scaffold, hinting at possible cooperation. However, the cellular roles of mammalian SLX1 are not yet known. Here, we use mouse genetics and structure function analysis to investigate SLX1 function. Disrupting the murine Slx1 and Slx4 genes revealed that they are essential for HJ resolution in mitotic cells. Moreover, SLX1 and MUS81-EME1 act together to resolve HJs in a manner that requires tethering to SLX4. We also show that SLX1, like MUS81-EME1, is required for repair of DNA interstrand crosslinks, but this role appears to be independent of HJ cleavage, at least in mouse cells. These findings shed light on HJ resolution in mammals and on maintenance of genome stability.


Asunto(s)
Reparación del ADN , ADN Cruciforme , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Western Blotting , Células Cultivadas , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Embrión de Mamíferos/citología , Endodesoxirribonucleasas/genética , Endonucleasas/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Modelos Genéticos , Datos de Secuencia Molecular , Unión Proteica , Interferencia de ARN , Recombinasas/genética , Recombinasas/metabolismo , Homología de Secuencia de Aminoácido
5.
J Cell Sci ; 131(1)2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29175910

RESUMEN

Our previous studies of PAWS1 (protein associated with SMAD1; also known as FAM83G) have suggested that this molecule has roles beyond BMP signalling. To investigate these roles, we have used CRISPR/Cas9 to generate PAWS1-knockout U2OS osteosarcoma cells. Here, we show that PAWS1 plays a role in the regulation of the cytoskeletal machinery, including actin and focal adhesion dynamics, and cell migration. Confocal microscopy and live cell imaging of actin in U2OS cells indicate that PAWS1 is also involved in cytoskeletal dynamics and organization. Loss of PAWS1 causes severe defects in F-actin organization and distribution as well as in lamellipodial organization, resulting in impaired cell migration. PAWS1 interacts in a dynamic fashion with the actin/cytoskeletal regulator CD2AP at lamellae, suggesting that its association with CD2AP controls actin organization and cellular migration. Genetic ablation of CD2AP from U2OS cells instigates actin and cell migration defects reminiscent of those seen in PAWS1-knockout cells.This article has an associated First Person interview with the first authors of the paper.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Movimiento Celular , Proteínas del Citoesqueleto/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Sistemas CRISPR-Cas , Línea Celular Tumoral , Proteínas del Citoesqueleto/genética , Adhesiones Focales/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Transducción de Señal
6.
EMBO Rep ; 19(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29514862

RESUMEN

The BMP and Wnt signalling pathways determine axis specification during embryonic development. Our previous work has shown that PAWS1 (also known as FAM83G) interacts with SMAD1 and modulates BMP signalling. Here, surprisingly, we show that overexpression of PAWS1 in Xenopus embryos activates Wnt signalling and causes complete axis duplication. Consistent with these observations in Xenopus, Wnt signalling is diminished in U2OS osteosarcoma cells lacking PAWS1, while BMP signalling is unaffected. We show that PAWS1 interacts and co-localises with the α isoform of casein kinase 1 (CK1), and that PAWS1 mutations incapable of binding CK1 fail both to activate Wnt signalling and to elicit axis duplication in Xenopus embryos.


Asunto(s)
Caseína Quinasa Ialfa/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Vía de Señalización Wnt , Animales , Proteína Axina/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Línea Celular Tumoral , Núcleo Celular , Expresión Génica Ectópica , Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Complejos Multiproteicos/metabolismo , Fosforilación , Unión Proteica , Transporte de Proteínas , Xenopus , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , beta Catenina/metabolismo
7.
EMBO J ; 34(22): 2840-61, 2015 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-26471730

RESUMEN

Mutations in the PTEN-induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser(65)) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1-dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub-family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser(111)) in response to PINK1 activation. Using phospho-specific antibodies raised against Ser(111) of each of the Rabs, we demonstrate that Rab Ser(111) phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient-derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser(111) phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser(111) phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser(65). We further show mechanistically that phosphorylation at Ser(111) significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser(111) may represent novel biomarkers of PINK1 activity in vivo. Our findings also suggest that disruption of Rab GTPase-mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease.


Asunto(s)
Proteínas Oncogénicas/metabolismo , Trastornos Parkinsonianos/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Sustitución de Aminoácidos , Activación Enzimática/genética , Quinasas del Centro Germinal , Células HEK293 , Células HeLa , Humanos , Mutación Missense , Proteínas Oncogénicas/genética , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/patología , Fosforilación/genética , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al GTP rab/genética
8.
Mol Cell ; 40(4): 632-44, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21055984

RESUMEN

Budding yeast Mms22 is required for homologous recombination (HR)-mediated repair of stalled or broken DNA replication forks. Here we identify a human Mms22-like protein (MMS22L) and an MMS22L-interacting protein, NFκBIL2/TONSL. Depletion of MMS22L or TONSL from human cells causes a high level of double-strand breaks (DSBs) during DNA replication. Both proteins accumulate at stressed replication forks, and depletion of MMS22L or TONSL from cells causes hypersensitivity to agents that cause S phase-associated DSBs, such as topoisomerase (TOP) inhibitors. In this light, MMS22L and TONSL are required for the HR-mediated repair of replication fork-associated DSBs. In cells depleted of either protein, DSBs induced by the TOP1 inhibitor camptothecin are resected normally, but the loading of the RAD51 recombinase is defective. Therefore, MMS22L and TONSL are required for the maintenance of genome stability when unscheduled DSBs occur in the vicinity of DNA replication forks.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , FN-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Recombinación Genética , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Supervivencia Celular , Biología Computacional , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/química , ADN Polimerasa Dirigida por ADN , Resistencia a Medicamentos , Humanos , Modelos Biológicos , Chaperonas Moleculares , Datos de Secuencia Molecular , Complejos Multienzimáticos , FN-kappa B/química , Proteínas Nucleares/química , Unión Proteica , Recombinasa Rad51/metabolismo , Fase S
9.
J Cell Sci ; 127(Pt 13): 2811-7, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24794496

RESUMEN

Defects in SLX4, a scaffold for DNA repair nucleases, result in Fanconi anemia (FA), due to the defective repair of inter-strand DNA crosslinks (ICLs). Some FA patients have an SLX4 deletion removing two tandem UBZ4-type ubiquitin-binding domains that are implicated in protein recruitment to sites of DNA damage. Here, we show that human SLX4 is recruited to sites of ICL induction but that the UBZ-deleted form of SLX4 in cells from FA patients is not. SLX4 recruitment does not require either the ubiquitylation of FANCD2 or the E3 ligases RNF8, RAD18 and BRCA1. We show that the first (UBZ-1) but not the second UBZ domain of SLX4 binds to ubiquitin polymers, with a preference for K63-linked chains. Furthermore, UBZ-1 is required for SLX4 recruitment to ICL sites and for efficient ICL repair in murine fibroblasts. The SLX4 UBZ-2 domain does not bind to ubiquitin in vitro or contribute to ICL repair, but it is required for the resolution of Holliday junctions in vivo. These data shed light on SLX4 recruitment, and they point to the existence of currently unidentified ubiquitylated ligands and E3 ligases that are crucial for ICL repair.


Asunto(s)
Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Recombinasas/genética , Ubiquitina/metabolismo , Animales , Sitios de Unión , ADN/genética , ADN/metabolismo , Reparación del ADN , Humanos , Ratones , Estructura Terciaria de Proteína , Recombinasas/metabolismo
10.
Biochem J ; 460(2): 165-75, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24650431

RESUMEN

Mutations in the gene that encodes the atypical channel-kinase TRPM6 (transient receptor potential melastatin 6) cause HSH (hypomagnesaemia with secondary hypocalcaemia), a disorder characterized by defective intestinal Mg2+ transport and impaired renal Mg2+ reabsorption. TRPM6, together with its homologue TRPM7, are unique proteins as they combine an ion channel domain with a C-terminally fused protein kinase domain. How TRPM6 channel and kinase activity are linked is unknown. Previous structural analysis revealed that TRPM7 possesses a non-catalytic dimerization motif preceding the kinase domain. This interacts with a dimerization pocket lying within the kinase domain. In the present study, we provide evidence that the dimerization motif in TRPM6 plays a critical role in regulating kinase activity as well as ion channel activity. We identify mutations within the TRPM6 dimerization motif (Leu1718 and Leu1721) or dimerization pocket (L1743A, Q1832K, A1836N, L1840A and L1919Q) that abolish dimerization and establish that these mutations inhibit protein kinase activity. We also demonstrate that kinase activity of a dimerization motif mutant can be restored by addition of a peptide encompassing the dimerization motif. Moreover, we observe that mutations that disrupt the dimerization motif and dimerization pocket interaction greatly diminish TRPM6 ion channel activity, in a manner that is independent of kinase activity. Finally, we analyse the impact on kinase activity of ten disease-causing missense mutations that lie outwith the protein kinase domain of TRPM6. This revealed that one mutation lying nearby the dimerization motif (S1754N), found previously to inhibit channel activity, abolished kinase activity. These results provide the first evidence that there is structural co-ordination between channel and kinase activity, which is mediated by the dimerization motif and pocket interaction. We discuss that modulation of this interaction could comprise a major regulatory mechanism by which TRPM6 function is controlled.


Asunto(s)
Canales Catiónicos TRPM/química , Canales Catiónicos TRPM/metabolismo , Células HEK293 , Humanos , Hipocalcemia/genética , Magnesio/sangre , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas , Estructura Terciaria de Proteína , Canales Catiónicos TRPM/genética
11.
Biochem J ; 458(3): 559-73, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24393035

RESUMEN

Precise homoeostasis of the intracellular concentration of Cl- is achieved via the co-ordinated activities of the Cl- influx and efflux. We demonstrate that the WNK (WNK lysine-deficient protein kinase)-activated SPAK (SPS1-related proline/alanine-rich kinase)/OSR1 (oxidative stress-responsive kinase 1) known to directly phosphorylate and stimulate the N[K]CCs (Na+-K+ ion co-transporters), also promote inhibition of the KCCs (K+-Cl- co-transporters) by directly phosphorylating a recently described C-terminal threonine residue conserved in all KCC isoforms [Site-2 (Thr1048)]. First, we demonstrate that SPAK and OSR1, in the presence of the MO25 regulatory subunit, robustly phosphorylates all KCC isoforms at Site-2 in vitro. Secondly, STOCK1S-50699, a WNK pathway inhibitor, suppresses SPAK/OSR1 activation and KCC3A Site-2 phosphorylation with similar efficiency. Thirdly, in ES (embryonic stem) cells lacking SPAK/OSR1 activity, endogenous phosphorylation of KCC isoforms at Site-2 is abolished and these cells display elevated basal activity of 86Rb+ uptake that was not markedly stimulated further by hypotonic high K+ conditions, consistent with KCC3A activation. Fourthly, a tight correlation exists between SPAK/OSR1 activity and the magnitude of KCC3A Site-2 phosphorylation. Lastly, a Site-2 alanine KCC3A mutant preventing SPAK/OSR1 phosphorylation exhibits increased activity. We also observe that KCCs are directly phosphorylated by SPAK/OSR1, at a novel Site-3 (Thr5 in KCC1/KCC3 and Thr6 in KCC2/KCC4), and a previously recognized KCC3-specific residue, Site-4 (Ser96). These data demonstrate that the WNK-regulated SPAK/OSR1 kinases directly phosphorylate the N[K]CCs and KCCs, promoting their stimulation and inhibition respectively. Given these reciprocal actions with anticipated net effects of increasing Cl- influx, we propose that the targeting of WNK-SPAK/OSR1 with kinase inhibitors might be a novel potent strategy to enhance cellular Cl- extrusion, with potential implications for the therapeutic modulation of epithelial and neuronal ion transport in human disease states.


Asunto(s)
Cloruros/metabolismo , Potasio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Simportadores/antagonistas & inhibidores , Simportadores/metabolismo , Secuencia de Aminoácidos , Línea Celular , Humanos , Datos de Secuencia Molecular , Fosfopéptidos/metabolismo , Fosforilación , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Transducción de Señal , Simportadores de Cloruro de Sodio-Potasio/metabolismo
12.
Biochem J ; 451(1): 111-22, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23387299

RESUMEN

The WNK (with no lysine kinase)-SPAK (SPS1-related proline/alanine-rich kinase)/OSR1 (oxidative stress-responsive kinase 1) signalling pathway plays an important role in controlling mammalian blood pressure by modulating the activity of ion co-transporters in the kidney. Recent studies have identified Gordon's hypertension syndrome patients with mutations in either CUL3 (Cullin-3) or the BTB protein KLHL3 (Kelch-like 3). CUL3 assembles with BTB proteins to form Cullin-RING E3 ubiquitin ligase complexes. To explore how a CUL3-KLHL3 complex might operate, we immunoprecipitated KLHL3 and found that it associated strongly with WNK isoforms and CUL3, but not with other components of the pathway [SPAK/OSR1 or NCC (Na(+)/Cl(-) co-transporter)/NKCC1 (Na(+)/K(+)/2Cl(-) co-transporter 1)]. Strikingly, 13 out of the 15 dominant KLHL3 disease mutations analysed inhibited binding to WNK1 or CUL3. The recombinant wild-type CUL3-KLHL3 E3 ligase complex, but not a disease-causing CUL3-KLHL3[R528H] mutant complex, ubiquitylated WNK1 in vitro. Moreover, siRNA (small interfering RNA)-mediated knockdown of CUL3 increased WNK1 protein levels and kinase activity in HeLa cells. We mapped the KLHL3 interaction site in WNK1 to a non-catalytic region (residues 479-667). Interestingly, the equivalent region in WNK4 encompasses residues that are mutated in Gordon's syndrome patients. Strikingly, we found that the Gordon's disease-causing WNK4[E562K] and WNK4[Q565E] mutations, as well as the equivalent mutation in the WNK1[479-667] fragment, abolished the ability to interact with KLHL3. These results suggest that the CUL3-KLHL3 E3 ligase complex regulates blood pressure via its ability to interact with and ubiquitylate WNK isoforms. The findings of the present study also emphasize that the missense mutations in WNK4 that cause Gordon's syndrome strongly inhibit interaction with KLHL3. This could elevate blood pressure by increasing the expression of WNK4 thereby stimulating inappropriate salt retention in the kidney by promoting activation of the NCC/NKCC2 ion co-transporters. The present study reveals how mutations that disrupt the ability of an E3 ligase to interact with and ubiquitylate a critical cellular substrate such as WNK isoforms can trigger a chronic disease such as hypertension.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Cullin/metabolismo , Mutación Missense , Proteínas Serina-Treonina Quinasas/metabolismo , Seudohipoaldosteronismo/enzimología , Ubiquitinación , Proteínas Adaptadoras Transductoras de Señales , Sustitución de Aminoácidos , Proteínas Portadoras/genética , Proteínas Cullin/genética , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Microfilamentos , Antígenos de Histocompatibilidad Menor , Proteínas Serina-Treonina Quinasas/genética , Seudohipoaldosteronismo/genética , Simportadores de Cloruro de Sodio-Potasio/genética , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12 , Proteína Quinasa Deficiente en Lisina WNK 1
13.
iScience ; 27(3): 109302, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38450154

RESUMEN

Protein phosphatase 2A (PP2A) is an essential Ser/Thr phosphatase. The PP2A holoenzyme complex comprises a scaffolding (A), regulatory (B), and catalytic (C) subunit, with PPP2CA being the principal catalytic subunit. The full scope of PP2A substrates in cells remains to be defined. To address this, we employed dTAG proteolysis-targeting chimeras to efficiently and selectively degrade dTAG-PPP2CA in homozygous knock-in HEK293 cells. Unbiased global phospho-proteomics identified 2,204 proteins with significantly increased phosphorylation upon dTAG-PPP2CA degradation, implicating them as potential PPP2CA substrates. A vast majority of these are novel. Bioinformatic analyses revealed involvement of the potential PPP2CA substrates in spliceosome function, cell cycle, RNA transport, and ubiquitin-mediated proteolysis. We identify a pSP/pTP motif as a predominant target for PPP2CA and confirm some of our phospho-proteomic data with immunoblotting. We provide an in-depth atlas of potential PPP2CA substrates and establish targeted degradation as a robust tool to unveil phosphatase substrates in cells.

14.
Open Biol ; 14(7): 240075, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39043225

RESUMEN

Palmoplantar keratoderma (PPK) is a multi-faceted skin disorder characterized by the thickening of the epidermis and abrasions on the palms and soles of the feet. Among the genetic causes, biallelic pathogenic variants in the FAM83G gene have been associated with PPK in dogs and humans. Here, a novel homozygous variant (c.794G>C, p.Arg265Pro) in the FAM83G gene, identified by whole exome sequencing in a 60-year-old female patient with PPK, is reported. The patient exhibited alterations in the skin of both hands and feet, dystrophic nails, thin, curly and sparse hair, long upper eyelid eyelashes, and poor dental enamel. FAM83G activates WNT signalling through association with ser/thr protein kinase CK1α. When expressed in FAM83G-/- DLD1 colorectal cancer cells, the FAM83GR265P variant displayed poor stability, a loss of interaction with CK1α and attenuated WNT signalling response. These defects persisted in skin fibroblast cells derived from the patient. Our findings imply that the loss of FAM83G-CK1α interaction and subsequent attenuation of WNT signalling underlie the pathogenesis of PPK caused by the FAM83GR265P variant.


Asunto(s)
Caseína Quinasa Ialfa , Queratodermia Palmoplantar , Vía de Señalización Wnt , Humanos , Femenino , Queratodermia Palmoplantar/genética , Queratodermia Palmoplantar/patología , Persona de Mediana Edad , Caseína Quinasa Ialfa/metabolismo , Caseína Quinasa Ialfa/genética , Secuenciación del Exoma , Unión Proteica , Fibroblastos/metabolismo
15.
Biochem Biophys Res Commun ; 431(3): 604-9, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23296203

RESUMEN

The MO25 scaffolding protein operates as critical regulator of a number of STE20 family protein kinases (e.g. MST and SPAK isoforms) as well as pseudokinases (e.g. STRAD isoforms that play a critical role in activating the LKB1 tumour suppressor). To better understand how MO25 interacts and stimulates the activity of STE20 protein kinases, we determined the crystal structure of MST3 catalytic domain (residues 19-289) in complex with full length MO25ß. The structure reveals an intricate web of interactions between MST3 and MO25ß that function to stabilise the kinase domain in a closed, active, conformation even in the absence of ATP or an ATP-mimetic inhibitor. The binding mode of MO25ß is reminiscent of the mechanism by which MO25α interacts with the pseudokinase STRADα. In particular we identified interface residues Tyr223 of MO25ß and Glu58 and Ile71 of MST3 that when mutated prevent activation of MST3 by MO25ß. These data provide molecular understanding of the mechanism by which MO25 isoforms regulates the activity of STE20 family protein kinases.


Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas del Tejido Nervioso/química , Proteínas Serina-Treonina Quinasas/química , Secuencia de Aminoácidos , Proteínas de Unión al Calcio/genética , Dominio Catalítico , Cristalografía por Rayos X , Activación Enzimática , Humanos , Datos de Secuencia Molecular , Mutación , Estructura Secundaria de Proteína
16.
Methods Enzymol ; 681: 61-79, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36764764

RESUMEN

Targeted protein degradation (TPD) is a useful approach in dissecting protein function and therapeutics. Technologies such as RNA interference or gene knockout that are routinely used rely on protein turnover. However, RNA interference takes a long time to deplete target proteins and is not suitable for long-lived proteins, while a genetic knockout is irreversible, takes a long time to achieve and is not suitable for essential genes. TPD has the potential to overcome the limitations of RNA interference and gene editing approaches. We have established the Affinity directed PROtein Missile (AdPROM) system, which harnesses nanobodies or binders of target proteins to redirect E3 ubiquitin ligase activity to the target protein to induce TPD through the ubiquitin proteasome system. Here we provide a step-by-step protocol for using the AdPROM system for targeted proteolysis of endogenously GFP-tagged K-RAS through an anti-GFP nanobody. This protocol can be amended to target a wide range of different proteins of interest (POIs) either by replacing the anti-GFP nanobody with a nanobody recognising the POI or by endogenously tagging the POI with GFP through CRISPR/Cas9 genome editing.


Asunto(s)
Anticuerpos de Dominio Único , Proteolisis , Anticuerpos de Dominio Único/genética , Proteínas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo
17.
Cell Chem Biol ; 30(10): 1261-1276.e7, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37591251

RESUMEN

Targeted protein degradation (TPD), induced by enforcing target proximity to an E3 ubiquitin ligase using small molecules has become an important drug discovery approach for targeting previously undruggable disease-causing proteins. However, out of over 600 E3 ligases encoded by the human genome, just over 10 E3 ligases are currently utilized for TPD. Here, using the affinity-directed protein missile (AdPROM) system, in which an anti-GFP nanobody was linked to an E3 ligase, we screened over 30 E3 ligases for their ability to degrade 4 target proteins, K-RAS, STK33, ß-catenin, and FoxP3, which were endogenously GFP-tagged. Several new E3 ligases, including CUL2 diGly receptor KLHDC2, emerged as effective degraders, suggesting that these E3 ligases can be taken forward for the development of small-molecule degraders, such as proteolysis targeting chimeras (PROTACs). As a proof of concept, we demonstrate that a KLHDC2-recruiting peptide-based PROTAC connected to chloroalkane is capable of degrading HALO-GFP protein in cells.


Asunto(s)
Factores de Transcripción , beta Catenina , Humanos , beta Catenina/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteolisis , Descubrimiento de Drogas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
18.
Life Sci Alliance ; 4(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33361334

RESUMEN

Immunomodulatory imide drugs (IMiDs) bind CRBN, a substrate receptor of the Cul4A E3 ligase complex, enabling the recruitment of neo-substrates, such as CK1α, and their degradation via the ubiquitinproteasome system. Here, we report FAM83F as such a neo-substrate. The eight FAM83 proteins (A-H) interact with and regulate the subcellular distribution of CK1α. We demonstrate that IMiD-induced FAM83F degradation requires its association with CK1α. However, no other FAM83 protein is degraded by IMiDs. We have recently identified FAM83F as a mediator of the canonical Wnt signalling pathway. The IMiD-induced degradation of FAM83F attenuated Wnt signalling in colorectal cancer cells and removed CK1α from the plasma membrane, mirroring the phenotypes observed with genetic ablation of FAM83F. Intriguingly, the expression of FAM83G, which also binds to CK1α, appears to attenuate the IMiD-induced degradation of CK1α, suggesting a protective role for FAM83G on CK1α. Our findings reveal that the efficiency and extent of target protein degradation by IMiDs depends on the nature of inherent multiprotein complex in which the target protein is part of.


Asunto(s)
Caseína Quinasa Ialfa/metabolismo , Imidas/farmacología , Factores Inmunológicos/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Membrana Celular/metabolismo , Técnicas de Sustitución del Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Estabilidad Proteica , Proteolisis/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo
19.
Life Sci Alliance ; 4(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33361109

RESUMEN

The function of the FAM83F protein, like the functions of many members of the FAM83 family, is poorly understood. Here, we show that injection of Fam83f mRNA into Xenopus embryos causes axis duplication, a phenotype indicative of enhanced Wnt signalling. Consistent with this, overexpression of FAM83F activates Wnt signalling, whereas ablation of FAM83F from human colorectal cancer (CRC) cells attenuates it. We demonstrate that FAM83F is farnesylated and interacts and co-localises with CK1α at the plasma membrane. This interaction with CK1α is essential for FAM83F to activate Wnt signalling, and FAM83F mutants that do not interact with CK1α fail to induce axis duplication in Xenopus embryos and to activate Wnt signalling in cells. FAM83F acts upstream of GSK-3ß because the attenuation of Wnt signalling caused by loss of FAM83F can be rescued by GSK-3 inhibition. Introduction of a farnesyl-deficient mutant of FAM83F in cells through CRISPR/Cas9 genome editing redirects the FAM83F-CK1α complex away from the plasma membrane and significantly attenuates Wnt signalling, indicating that FAM83F exerts its effects on Wnt signalling at the plasma membrane.


Asunto(s)
Caseína Quinasa Ialfa/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Vía de Señalización Wnt , Animales , Línea Celular , Membrana Celular/metabolismo , Desarrollo Embrionario/genética , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes Reporteros , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Prenilación , Unión Proteica , Transporte de Proteínas , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
20.
Cell Chem Biol ; 27(9): 1151-1163.e6, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32668202

RESUMEN

K-RAS is known as the most frequently mutated oncogene. However, the development of conventional K-RAS inhibitors has been extremely challenging, with a mutation-specific inhibitor reaching clinical trials only recently. Targeted proteolysis has emerged as a new modality in drug discovery to tackle undruggable targets. Our laboratory has developed a system for targeted proteolysis using peptidic high-affinity binders, called "AdPROM." Here, we used CRISPR/Cas9 technology to knock in a GFP tag on the native K-RAS gene in A549 adenocarcinoma (A549GFPKRAS) cells and constructed AdPROMs containing high-affinity GFP or H/K-RAS binders. Expression of GFP-targeting AdPROM in A549GFPKRAS led to robust proteasomal degradation of endogenous GFP-K-RAS, while expression of anti-HRAS-targeting AdPROM in different cell lines resulted in the degradation of both GFP-tagged and untagged K-RAS, and untagged H-RAS. Our findings imply that endogenous RAS proteins can be targeted for proteolysis, supporting the idea of an alternative therapeutic approach to these undruggable targets.


Asunto(s)
Proteolisis , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Células A549 , Marcadores de Afinidad , Sistemas CRISPR-Cas/genética , Línea Celular , Proliferación Celular , Técnicas de Sustitución del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Microscopía Fluorescente , Péptidos/química , Péptidos/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA