Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
BMC Plant Biol ; 23(1): 91, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36782130

RESUMEN

BACKGROUND: Mitochondria are organelles within eukaryotic cells that are central to the metabolic processes of cellular respiration and ATP production. However, the evolution of mitochondrial genomes (mitogenomes) in plants is virtually unknown compared to animal mitogenomes or plant plastids, due to complex structural variation and long stretches of repetitive DNA making accurate genome assembly more challenging. Comparing the structural and sequence differences of organellar genomes within and between sorghum species is an essential step in understanding evolutionary processes such as organellar sequence transfer to the nuclear genome as well as improving agronomic traits in sorghum related to cellular metabolism. RESULTS: Here, we assembled seven sorghum mitochondrial and plastid genomes and resolved reticulated mitogenome structures with multilinked relationships that could be grouped into three structural conformations that differ in the content of repeats and genes by contig. The grouping of these mitogenome structural types reflects the two domestication events for sorghum in east and west Africa. CONCLUSIONS: We report seven mitogenomes of sorghum from different cultivars and wild sources. The assembly method used here will be helpful in resolving complex genomic structures in other plant species. Our findings give new insights into the structure of sorghum mitogenomes that provides an important foundation for future research into the improvement of sorghum traits related to cellular respiration, cytonuclear incompatibly, and disease resistance.


Asunto(s)
Genoma Mitocondrial , Sorghum , Genoma Mitocondrial/genética , Sorghum/genética , Filogenia , Domesticación , Plantas/genética , Núcleo Celular , Evolución Molecular , Genoma de Planta/genética
2.
Plant J ; 108(1): 231-243, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34309934

RESUMEN

Variation in grain size, a major determinant of grain yield and quality in cereal crops, is determined by both the plant's genetic potential and the available assimilate to fill the grain in the absence of stress. This study investigated grain size variation in response to variation in assimilate supply in sorghum using a diversity panel (n = 837) and a backcross-nested association mapping population (n = 1421) across four experiments. To explore the effects of genetic potential and assimilate availability on grain size, the top half of selected panicles was removed at anthesis. Results showed substantial variation in five grain size parameters with high heritability. Artificial reduction in grain number resulted in a general increase in grain weight, with the extent of the increase varying across genotypes. Genome-wide association studies identified 44 grain size quantitative trait locus (QTL) that were likely to act on assimilate availability and 50 QTL that were likely to act on genetic potential. This finding was further supported by functional enrichment analysis and co-location analysis with known grain number QTL and candidate genes. RNA interference and overexpression experiments were conducted to validate the function of one of the identified gene, SbDEP1, showing that SbDEP1 positively regulates grain number and negatively regulates grain size by controlling primary branching in sorghum. Haplotype analysis of SbDEP1 suggested a possible role in racial differentiation. The enhanced understanding of grain size variation in relation to assimilate availability presented in this study will benefit sorghum improvement and have implications for other cereal crops.


Asunto(s)
Sitios de Carácter Cuantitativo/genética , Sorghum/genética , Productos Agrícolas , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Estudio de Asociación del Genoma Completo , Genotipo , Haplotipos , Fenotipo , Semillas/genética , Semillas/crecimiento & desarrollo , Sorghum/crecimiento & desarrollo
3.
J Exp Bot ; 73(19): 6711-6726, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35961690

RESUMEN

The stay-green trait is recognized as a key drought adaptation mechanism in cereals worldwide. Stay-green sorghum plants exhibit delayed senescence of leaves and stems, leading to prolonged growth, a reduced risk of lodging, and higher grain yield under end-of-season drought stress. More than 45 quantitative trait loci (QTL) associated with stay-green have been identified, including two major QTL (Stg1 and Stg2). However, the contributing genes that regulate functional stay-green are not known. Here we show that the PIN FORMED family of auxin efflux carrier genes induce some of the causal mechanisms driving the stay-green phenotype in sorghum, with SbPIN4 and SbPIN2 located in Stg1 and Stg2, respectively. We found that nine of 11 sorghum PIN genes aligned with known stay-green QTL. In transgenic studies, we demonstrated that PIN genes located within the Stg1 (SbPIN4), Stg2 (SbPIN2), and Stg3b (SbPIN1) QTL regions acted pleiotropically to modulate canopy development, root architecture, and panicle growth in sorghum, with SbPIN1, SbPIN2, and SbPIN4 differentially expressed in various organs relative to the non-stay-green control. The emergent consequence of such modifications in canopy and root architecture is a stay-green phenotype. Crop simulation modelling shows that the SbPIN2 phenotype can increase grain yield under drought.


Asunto(s)
Sequías , Sorghum , Sitios de Carácter Cuantitativo/genética , Sorghum/fisiología , Fenotipo , Adaptación Fisiológica/genética , Grano Comestible/genética
4.
Plant Biotechnol J ; 18(4): 1093-1105, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31659829

RESUMEN

Grain size is a key yield component of cereal crops and a major quality attribute. It is determined by a genotype's genetic potential and its capacity to fill the grains. This study aims to dissect the genetic architecture of grain size in sorghum. An integrated genome-wide association study (GWAS) was conducted using a diversity panel (n = 837) and a BC-NAM population (n = 1421). To isolate genetic effects associated with genetic potential of grain size, rather than the genotype's capacity to fill the grains, a treatment of removing half of the panicle was imposed during flowering. Extensive and highly heritable variation in grain size was observed in both populations in 5 field trials, and 81 grain size QTL were identified in subsequent GWAS. These QTL were enriched for orthologues of known grain size genes in rice and maize, and had significant overlap with SNPs associated with grain size in rice and maize, supporting common genetic control of this trait among cereals. Grain size genes with opposite effect on grain number were less likely to overlap with the grain size QTL from this study, indicating the treatment facilitated identification of genetic regions related to the genetic potential of grain size. These results enhance understanding of the genetic architecture of grain size in cereal, and pave the way for exploration of underlying molecular mechanisms and manipulation of this trait in breeding practices.


Asunto(s)
Estudios de Asociación Genética , Semillas/crecimiento & desarrollo , Sorghum/genética , Fenotipo , Sitios de Carácter Cuantitativo , Sorghum/crecimiento & desarrollo
5.
Theor Appl Genet ; 133(3): 1009-1018, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31907563

RESUMEN

KEY MESSAGE: Multi-environment models using marker-based kinship information for both additive and dominance effects can accurately predict hybrid performance in different environments. Sorghum is an important hybrid crop that is grown extensively in many subtropical and tropical regions including Northern NSW and Queensland in Australia. The highly varying weather patterns in the Australian summer months mean that sorghum hybrids exhibit a great deal of variation in yield between locations. To ultimately enable prediction of the outcome of crossing parental lines, both additive effects on yield performance and dominance interaction effects need to be characterised. This paper demonstrates that fitting a linear mixed model that includes both types of effects calculated using genetic markers in relationship matrices improves predictions. Genotype by environment interactions was investigated by comparing FA1 (single-factor analytic) and FA2 (two-factor analytic) structures. The G×E causes a change in hybrid rankings between trials with a difference of up to 25% of the hybrids in the top 10% of each trial. The prediction accuracies increased with the addition of the dominance term (over and above that achieved with an additive effect alone) by an average of 15% and a maximum of 60%. The percentage of dominance of the total genetic variance varied between trials with the trials with higher broad-sense heritability having the greater percentage of dominance. The inclusion of dominance in the factor analytic models improves the accuracy of the additive effects. Breeders selecting high yielding parents for crossing need to be aware of effects due to environment and dominance.


Asunto(s)
Fitomejoramiento , Sorghum/genética , Australia , Clima , Epistasis Genética , Genes Dominantes , Estudios de Asociación Genética , Marcadores Genéticos , Variación Genética , Genómica , Genotipo , Modelos Genéticos , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , Selección Genética , Sorghum/crecimiento & desarrollo
6.
Theor Appl Genet ; 132(7): 2055-2067, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30968160

RESUMEN

KEY MESSAGE: The use of a kinship matrix integrating pedigree- and marker-based relationships optimized the performance of genomic prediction in sorghum, especially for traits of lower heritability. Selection based on genome-wide markers has become an active breeding strategy in crops. Genomic prediction models can make use of pedigree information to account for the residual polygenic effects not captured by markers. Our aim was to evaluate the impact of using pedigree and genomic information on prediction quality of breeding values for different traits in sorghum. We explored BLUP models that use weighted combinations of pedigree and genomic relationship matrices. The optimal weighting factor was empirically determined in order to maximize predictive ability after evaluating a range of candidate weights. The phenotypic data consisted of testcross evaluations of sorghum parental lines across multiple environments. All lines were genotyped, and full pedigree information was available. The performance of the best predictive combined matrix was compared to that of models fitting the component matrices independently. Model performance was assessed using cross-validation technique. Fitting a combined pedigree-genomic matrix with the optimal weight always yielded the largest increases in predictive ability and the largest reductions in prediction bias relative to the simple G-BLUP. However, the weight that optimized prediction varied across traits. The benefits of including pedigree information in the genomic model were more relevant for traits with lower heritability, such as grain yield and stay-green. Our results suggest that the combination of pedigree and genomic relatedness can be used to optimize predictions of complex traits in crops when the additive variation is not fully explained by markers.


Asunto(s)
Genómica/métodos , Modelos Genéticos , Linaje , Fitomejoramiento , Sorghum/genética , Genotipo , Fenotipo
7.
Plant Biotechnol J ; 14(12): 2240-2253, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27155090

RESUMEN

Next-generation sequencing of complete genomes has given researchers unprecedented levels of information to study the multifaceted evolutionary changes that have shaped elite plant germplasm. In conjunction with population genetic analytical techniques and detailed online databases, we can more accurately capture the effects of domestication on entire biological pathways of agronomic importance. In this study, we explore the genetic diversity and signatures of selection in all predicted gene models of the storage starch synthesis pathway of Sorghum bicolor, utilizing a diversity panel containing lines categorized as either 'Landraces' or 'Wild and Weedy' genotypes. Amongst a total of 114 genes involved in starch synthesis, 71 had at least a single signal of purifying selection and 62 a signal of balancing selection and others a mix of both. This included key genes such as STARCH PHOSPHORYLASE 2 (SbPHO2, under balancing selection), PULLULANASE (SbPUL, under balancing selection) and ADP-glucose pyrophosphorylases (SHRUNKEN2, SbSH2 under purifying selection). Effectively, many genes within the primary starch synthesis pathway had a clear reduction in nucleotide diversity between the Landraces and wild and weedy lines indicating that the ancestral effects of domestication are still clearly identifiable. There was evidence of the positional rate variation within the well-characterized primary starch synthesis pathway of sorghum, particularly in the Landraces, whereby low evolutionary rates upstream and high rates downstream in the metabolic pathway were expected. This observation did not extend to the wild and weedy lines or the minor starch synthesis pathways.


Asunto(s)
Genoma de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sorghum/genética , Sorghum/metabolismo , Almidón/metabolismo
8.
Theor Appl Genet ; 128(9): 1765-75, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26024715

RESUMEN

KEY MESSAGE: The potential for exploiting heterosis for sorghum hybrid production in Ethiopia with improved local adaptation and farmers preferences has been investigated and populations suitable for initial hybrid development have been identified. Hybrids in sorghum have demonstrated increased productivity and stability of performance in the developed world. In Ethiopia, the uptake of hybrid sorghum has been limited to date, primarily due to poor adaptation and absence of farmer's preferred traits in existing hybrids. This study aimed to identify complementary parental pools to develop locally adapted hybrids, through an analysis of whole genome variability of 184 locally adapted genotypes and introduced hybrid parents (R and B). Genetic variability was assessed using genetic distance, model-based STRUCTURE analysis and pair-wise comparison of groups. We observed a high degree of genetic similarity between the Ethiopian improved inbred genotypes and a subset of landraces adapted to lowland agro-ecology with the introduced R lines. This coupled with the genetic differentiation from existing B lines, indicated that these locally adapted genotype groups are expected to have similar patterns of heterotic expression as observed between introduced R and B line pools. Additionally, the hybrids derived from these locally adapted genotypes will have the benefit of containing farmers preferred traits. The groups most divergent from introduced B lines were the Ethiopian landraces adapted to highland and intermediate agro-ecologies and a subset of lowland-adapted genotypes, indicating the potential for increased heterotic response of their hybrids. However, these groups were also differentiated from the R lines, and hence are different from the existing complementary heterotic pools. This suggests that although these groups could provide highly divergent parental pools, further research is required to investigate the extent of heterosis and their hybrid performance.


Asunto(s)
Vigor Híbrido , Hibridación Genética , Fitomejoramiento , Sorghum/genética , Adaptación Biológica/genética , ADN de Plantas/genética , Etiopía , Genética de Población , Genoma de Planta , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Genéticos , Análisis de Secuencia de ADN
9.
Theor Appl Genet ; 128(9): 1813-25, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26071275

RESUMEN

We detected seven QTLs for 100-grain weight in sorghum using an F 2 population, and delimited qGW1 to a 101-kb region on the short arm of chromosome 1, which contained 13 putative genes. Sorghum is one of the most important cereal crops. Breeding high-yielding sorghum varieties will have a profound impact on global food security. Grain weight is an important component of grain yield. It is a quantitative trait controlled by multiple quantitative trait loci (QTLs); however, the genetic basis of grain weight in sorghum is not well understood. In the present study, using an F2 population derived from a cross between the grain sorghum variety SA2313 (Sorghum bicolor) and the Sudan-grass variety Hiro-1 (S. bicolor), we detected seven QTLs for 100-grain weight. One of them, qGW1, was detected consistently over 2 years and contributed between 20 and 40 % of the phenotypic variation across multiple genetic backgrounds. Using extreme recombinants from a fine-mapping F3 population, we delimited qGW1 to a 101-kb region on the short arm of chromosome 1, containing 13 predicted gene models, one of which was found to be under purifying selection during domestication. However, none of the grain size candidate genes shared sequence similarity with previously cloned grain weight-related genes from rice. This study will facilitate isolation of the gene underlying qGW1 and advance our understanding of the regulatory mechanisms of grain weight. SSR markers linked to the qGW1 locus can be used for improving sorghum grain yield through marker-assisted selection.


Asunto(s)
Mapeo Cromosómico , Sitios de Carácter Cuantitativo , Semillas/crecimiento & desarrollo , Sorghum/genética , Cromosomas de las Plantas , Productos Agrícolas/genética , ADN de Plantas/genética , Grano Comestible/genética , Genes de Plantas , Marcadores Genéticos , Fenotipo , Fitomejoramiento
10.
Theor Appl Genet ; 128(3): 489-99, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25575837

RESUMEN

KEY MESSAGE: Evaluation of resistance to Pyrenophora teres f. maculata in barley breeding populations via association mapping revealed a complex genetic architecture comprising a mixture of major and minor effect genes. In the search for stable resistance to spot form of net blotch (Pyrenophora teres f. maculata, SFNB), association mapping was conducted on four independent barley (Hordeum vulgare L.) breeding populations comprising a total of 898 unique elite breeding lines from the Northern Region Barley Breeding Program in Australia for discovery of quantitative trait loci (QTL) influencing resistance at seedling and adult plant growth stages. A total of 29 significant QTL were validated across multiple breeding populations, with 22 conferring resistance at both seedling and adult plant growth stages. The remaining 7 QTL conferred resistance at either seedling (2 QTL) or adult plant (5 QTL) growth stages only. These 29 QTL represented 24 unique genomic regions, of which five were found to co-locate with previously identified QTL for SFNB. The results indicated that SFNB resistance is controlled by a large number of QTL varying in effect size with large effects QTL on chromosome 7H. A large proportion of the QTL acted in the same direction for both seedling and adult responses, suggesting that phenotypic selection for SFNB resistance performed at either growth stage could achieve adequate levels of resistance. However, the accumulation of specific resistance alleles on several chromosomes must be considered in molecular breeding selection strategies.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad/genética , Hordeum/genética , Sitios de Carácter Cuantitativo , Cruzamiento , Mapeo Cromosómico , Cromosomas de las Plantas , Genes de Plantas , Genotipo , Hordeum/microbiología , Desequilibrio de Ligamiento , Fenotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
11.
Theor Appl Genet ; 126(3): 663-72, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23117720

RESUMEN

Spontaneous sequence changes and the selection of beneficial mutations are driving forces of gene diversification and key factors of evolution. In highly dynamic co-evolutionary processes such as plant-pathogen interactions, the plant's ability to rapidly adapt to newly emerging pathogens is paramount. The hexaploid wheat gene Lr34, which encodes an ATP-binding cassette (ABC) transporter, confers durable field resistance against four fungal diseases. Despite its extensive use in breeding and agriculture, no increase in virulence towards Lr34 has been described over the last century. The wheat genepool contains two predominant Lr34 alleles of which only one confers disease resistance. The two alleles, located on chromosome 7DS, differ by only two exon-polymorphisms. Putatively functional homoeologs and orthologs of Lr34 are found on the B-genome of wheat and in rice and sorghum, but not in maize, barley and Brachypodium. In this study we present a detailed haplotype analysis of homoeologous and orthologous Lr34 genes in genetically and geographically diverse selections of wheat, rice and sorghum accessions. We found that the resistant Lr34 haplotype is unique to the wheat D-genome and is not found in the B-genome of wheat or in rice and sorghum. Furthermore, we only found the susceptible Lr34 allele in a set of 252 Ae. tauschii genotypes, the progenitor of the wheat D-genome. These data provide compelling evidence that the Lr34 multi-pathogen resistance is the result of recent gene diversification occurring after the formation of hexaploid wheat about 8,000 years ago.


Asunto(s)
Resistencia a la Enfermedad/genética , Oryza/genética , Enfermedades de las Plantas/genética , Sorghum/genética , Triticum/genética , Alelos , Secuencia de Aminoácidos , Cromosomas de las Plantas/genética , Evolución Molecular , Exones , Hongos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Haplotipos , Datos de Secuencia Molecular , Oryza/inmunología , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ADN , Sorghum/inmunología , Triticum/inmunología
12.
Theor Appl Genet ; 120(7): 1279-87, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20091293

RESUMEN

The A1 cytoplasmic-nuclear male sterility system in sorghum is used almost exclusively for the production of commercial hybrid seed and thus, the dominant genes that restore male fertility in F(1) hybrids are of critical importance to commercial seed production. The genetics of fertility restoration in sorghum can appear complex, being controlled by at least two major genes with additional modifiers and additional gene-environment interaction. To elucidate the molecular processes controlling fertility restoration and to develop a marker screening system for this important trait, two sorghum recombinant inbred line populations were created by crossing a restorer and a non-restoring inbred line, with fertility phenotypes evaluated in hybrid combination with three unique cytoplasmic male sterile lines. In both populations, a single major gene segregated for restoration which was localized to chromosome SBI-02 at approximately 0.5 cM from microsatellite marker, Xtxp304. In the two populations we observed that approximately 85 and 87% of the phenotypic variation in seed set was associated with the major Rf gene on SBI-02. Some evidence for modifier genes was also observed since a continuum of partial restored fertility was exhibited by lines in both RIL populations. With the prior report (Klein et al. in Theor Appl Genet 111:994-1012, 2005) of the cloning of the major fertility restoration gene Rf1 in sorghum, the major fertility restorer locus identified in this study was designated Rf2. A fine-mapping population was used to resolve the Rf2 locus to a 236,219-bp region of chromosome SBI-02, which spanned ~31 predicted open reading frames including a pentatricopeptide repeat (PPR) gene family member. The PPR gene displayed high homology with rice Rf1. Progress towards the development of a marker-assisted screen for fertility restoration is discussed.


Asunto(s)
Genes de Plantas/genética , Mapeo Físico de Cromosoma/métodos , Polen/genética , Sorghum/genética , Emparejamiento Base/genética , Segregación Cromosómica/genética , Cruzamientos Genéticos , Fertilidad/genética , Ligamiento Genético , Sitios Genéticos/genética , Marcadores Genéticos , Hibridación Genética , Endogamia
13.
BMC Plant Biol ; 9: 13, 2009 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-19171067

RESUMEN

BACKGROUND: Sorghum genome mapping based on DNA markers began in the early 1990s and numerous genetic linkage maps of sorghum have been published in the last decade, based initially on RFLP markers with more recent maps including AFLPs and SSRs and very recently, Diversity Array Technology (DArT) markers. It is essential to integrate the rapidly growing body of genetic linkage data produced through DArT with the multiple genetic linkage maps for sorghum generated through other marker technologies. Here, we report on the colinearity of six independent sorghum component maps and on the integration of these component maps into a single reference resource that contains commonly utilized SSRs, AFLPs, and high-throughput DArT markers. RESULTS: The six component maps were constructed using the MultiPoint software. The lengths of the resulting maps varied between 910 and 1528 cM. The order of the 498 markers that segregated in more than one population was highly consistent between the six individual mapping data sets. The framework consensus map was constructed using a "Neighbours" approach and contained 251 integrated bridge markers on the 10 sorghum chromosomes spanning 1355.4 cM with an average density of one marker every 5.4 cM, and were used for the projection of the remaining markers. In total, the sorghum consensus map consisted of a total of 1997 markers mapped to 2029 unique loci (1190 DArT loci and 839 other loci) spanning 1603.5 cM and with an average marker density of 1 marker/0.79 cM. In addition, 35 multicopy markers were identified. On average, each chromosome on the consensus map contained 203 markers of which 58.6% were DArT markers. Non-random patterns of DNA marker distribution were observed, with some clear marker-dense regions and some marker-rare regions. CONCLUSION: The final consensus map has allowed us to map a larger number of markers than possible in any individual map, to obtain a more complete coverage of the sorghum genome and to fill a number of gaps on individual maps. In addition to overall general consistency of marker order across individual component maps, good agreement in overall distances between common marker pairs across the component maps used in this study was determined, using a difference ratio calculation. The obtained consensus map can be used as a reference resource for genetic studies in different genetic backgrounds, in addition to providing a framework for transferring genetic information between different marker technologies and for integrating DArT markers with other genomic resources. DArT markers represent an affordable, high throughput marker system with great utility in molecular breeding programs, especially in crops such as sorghum where SNP arrays are not publicly available.


Asunto(s)
Mapeo Cromosómico/métodos , Genoma de Planta , Sorghum/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , ADN de Plantas/genética , Marcadores Genéticos , Genética de Población , Genotipo , Repeticiones de Microsatélite , Análisis de Secuencia de ADN , Programas Informáticos
14.
Trends Plant Sci ; 24(12): 1072-1074, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31648939

RESUMEN

The inadequacy of a single reference genome to capture the full landscape of genetic diversity within a species constrains exploration of genetic variation for crop improvement. A recent study by Yang et al. has demonstrated the value of multiple reference-quality genomes in capturing structural variants and guiding biological discovery.


Asunto(s)
Genoma de Planta , Zea mays , Productos Agrícolas/genética , Variación Genética , Genómica
15.
Front Plant Sci ; 10: 997, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31417601

RESUMEN

Grain yield and stay-green drought adaptation trait are important targets of selection in grain sorghum breeding for broad adaptation to a range of environments. Genomic prediction for these traits may be enhanced by joint multi-trait analysis. The objectives of this study were to assess the capacity of multi-trait models to improve genomic prediction of parental breeding values for grain yield and stay-green in sorghum by using information from correlated auxiliary traits, and to determine the combinations of traits that optimize predictive results in specific scenarios. The dataset included phenotypic performance of 2645 testcross hybrids across 26 environments as well as genomic and pedigree information on their female parental lines. The traits considered were grain yield (GY), stay-green (SG), plant height (PH), and flowering time (FT). We evaluated the improvement in predictive performance of multi-trait G-BLUP models relative to single-trait G-BLUP. The use of a blended kinship matrix exploiting pedigree and genomic information was also explored to optimize multi-trait predictions. Predictive ability for GY increased up to 16% when PH information on the training population was exploited through multi-trait genomic analysis. For SG prediction, full advantage from multi-trait G-BLUP was obtained only when GY information was also available on the predicted lines per se, with predictive ability improvements of up to 19%. Predictive ability, unbiasedness and accuracy of predictions from conventional multi-trait G-BLUP were further optimized by using a combined pedigree-genomic relationship matrix. Results of this study suggest that multi-trait genomic evaluation combining routinely measured traits may be used to improve prediction of crop productivity and drought adaptability in grain sorghum.

16.
BMC Genomics ; 9: 26, 2008 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-18208620

RESUMEN

BACKGROUND: The sequential nature of gel-based marker systems entails low throughput and high costs per assay. Commonly used marker systems such as SSR and SNP are also dependent on sequence information. These limitations result in high cost per data point and significantly limit the capacity of breeding programs to obtain sufficient return on investment to justify the routine use of marker-assisted breeding for many traits and particularly quantitative traits. Diversity Arrays Technology (DArT) is a cost effective hybridisation-based marker technology that offers a high multiplexing level while being independent of sequence information. This technology offers sorghum breeding programs an alternative approach to whole-genome profiling. We report on the development, application, mapping and utility of DArT markers for sorghum germplasm. RESULTS: A genotyping array was developed representing approximately 12,000 genomic clones using PstI+BanII complexity with a subset of clones obtained through the suppression subtractive hybridisation (SSH) method. The genotyping array was used to analyse a diverse set of sorghum genotypes and screening a Recombinant Inbred Lines (RIL) mapping population. Over 500 markers detected variation among 90 accessions used in a diversity analysis. Cluster analysis discriminated well between all 90 genotypes. To confirm that the sorghum DArT markers behave in a Mendelian manner, we constructed a genetic linkage map for a cross between R931945-2-2 and IS 8525 integrating DArT and other marker types. In total, 596 markers could be placed on the integrated linkage map, which spanned 1431.6 cM. The genetic linkage map had an average marker density of 1/2.39 cM, with an average DArT marker density of 1/3.9 cM. CONCLUSION: We have successfully developed DArT markers for Sorghum bicolor and have demonstrated that DArT provides high quality markers that can be used for diversity analyses and to construct medium-density genetic linkage maps. The high number of DArT markers generated in a single assay not only provides a precise estimate of genetic relationships among genotypes, but also their even distribution over the genome offers real advantages for a range of molecular breeding and genomics applications.


Asunto(s)
Mapeo Cromosómico/métodos , Variación Genética/genética , Sorghum/genética , Genes de Plantas , Marcadores Genéticos/genética , Genotipo , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reproducibilidad de los Resultados
17.
BMC Plant Biol ; 8: 55, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18482440

RESUMEN

BACKGROUND: Cultivated peanut or groundnut (Arachis hypogaea L.) is the fourth most important oilseed crop in the world, grown mainly in tropical, subtropical and warm temperate climates. Due to its origin through a single and recent polyploidization event, followed by successive selection during breeding efforts, cultivated groundnut has a limited genetic background. In such species, microsatellite or simple sequence repeat (SSR) markers are very informative and useful for breeding applications. The low level of polymorphism in cultivated germplasm, however, warrants a need of larger number of polymorphic microsatellite markers for cultivated groundnut. RESULTS: A microsatellite-enriched library was constructed from the genotype TMV2. Sequencing of 720 putative SSR-positive clones from a total of 3,072 provided 490 SSRs. 71.2% of these SSRs were perfect type, 13.1% were imperfect and 15.7% were compound. Among these SSRs, the GT/CA repeat motifs were the most common (37.6%) followed by GA/CT repeat motifs (25.9%). The primer pairs could be designed for a total of 170 SSRs and were optimized initially on two genotypes. 104 (61.2%) primer pairs yielded scorable amplicon and 46 (44.2%) primers showed polymorphism among 32 cultivated groundnut genotypes. The polymorphic SSR markers detected 2 to 5 alleles with an average of 2.44 per locus. The polymorphic information content (PIC) value for these markers varied from 0.12 to 0.75 with an average of 0.46. Based on 112 alleles obtained by 46 markers, a phenogram was constructed to understand the relationships among the 32 genotypes. Majority of the genotypes representing subspecies hypogaea were grouped together in one cluster, while the genotypes belonging to subspecies fastigiata were grouped mainly under two clusters. CONCLUSION: Newly developed set of 104 markers extends the repertoire of SSR markers for cultivated groundnut. These markers showed a good level of PIC value in cultivated germplasm and therefore would be very useful for germplasm analysis, linkage mapping, diversity studies and phylogenetic relationships in cultivated groundnut as well as related Arachis species.


Asunto(s)
Arachis/genética , Repeticiones de Microsatélite/genética , ADN de Plantas/química , ADN de Plantas/genética , Repeticiones de Minisatélite/genética , Datos de Secuencia Molecular , Polimorfismo Genético , Análisis de Secuencia de ADN
18.
Front Plant Sci ; 8: 1237, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28769949

RESUMEN

Seed size and seed weight are major quality attributes and important determinants of yield that have been strongly selected for during crop domestication. Limited information is available about the genetic control and genes associated with seed size and weight in sorghum. This study identified sorghum orthologs of genes with proven effects on seed size and weight in other plant species and searched for evidence of selection during domestication by utilizing resequencing data from a diversity panel. In total, 114 seed size candidate genes were identified in sorghum, 63 of which exhibited signals of purifying selection during domestication. A significant number of these genes also had domestication signatures in maize and rice, consistent with the parallel domestication of seed size in cereals. Seed size candidate genes that exhibited differentially high expression levels in seed were also found more likely to be under selection during domestication, supporting the hypothesis that modification to seed size during domestication preferentially targeted genes for intrinsic seed size rather than genes associated with physiological factors involved in the carbohydrate supply and transport. Our results provide improved understanding of the complex genetic control of seed size and weight and the impact of domestication on these genes.

19.
Front Plant Sci ; 8: 2102, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29375590

RESUMEN

Mungbean [Vigna radiata (L.) R. Wilczek var. radiata] is an important grain legume globally, providing a high-quality plant protein source largely produced and consumed in South and East Asia. This study aimed to characterize a mungbean diversity panel consisting of 466 cultivated accessions and demonstrate its utility by conducting a pilot genome-wide association study of seed coat color. In addition 16 wild accessions were genotyped for comparison and in total over 22,000 polymorphic genome-wide SNPs were identified and used to analyze the genetic diversity, population structure, linkage disequilibrium (LD) of mungbean. Polymorphism was lower in the cultivated accessions in comparison to the wild accessions, with average polymorphism information content values 0.174, versus 0.305 in wild mungbean. LD decayed in ∼100 kb in cultivated lines, a distance higher than the linkage decay of ∼60 kb estimated in wild mungbean. Four distinct subgroups were identified within the cultivated lines, which broadly corresponded to geographic origin and seed characteristics. In a pilot genome-wide association mapping study of seed coat color, five genomic regions associated were identified, two of which were close to seed coat color genes in other species. This mungbean diversity panel constitutes a valuable resource for genetic dissection of important agronomical traits to accelerate mungbean breeding.

20.
Front Plant Sci ; 7: 1544, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27826302

RESUMEN

Nitrogen (N) fertilizers are a major agricultural input where more than 100 million tons are supplied annually. Cereals are particularly inefficient at soil N uptake, where the unrecovered nitrogen causes serious environmental damage. Sorghum bicolor (sorghum) is an important cereal crop, particularly in resource-poor semi-arid regions, and is known to have a high NUE in comparison to other major cereals under limited N conditions. This study provides the first assessment of genetic diversity and signatures of selection across 230 fully sequenced genes putatively involved in the uptake and utilization of N from a diverse panel of sorghum lines. This comprehensive analysis reveals an overall reduction in diversity as a result of domestication and a total of 128 genes displaying signatures of purifying selection, thereby revealing possible gene targets to improve NUE in sorghum and cereals alike. A number of key genes appear to have been involved in selective sweeps, reducing their sequence diversity. The ammonium transporter (AMT) genes generally had low allelic diversity, whereas a substantial number of nitrate/peptide transporter 1 (NRT1/PTR) genes had higher nucleotide diversity in domesticated germplasm. Interestingly, members of the distinct race Guinea margaritiferum contained a number of unique alleles, and along with the wild sorghum species, represent a rich resource of new variation for plant improvement of NUE in sorghum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA