Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Anesthesiology ; 130(5): 767-777, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30870161

RESUMEN

BACKGROUND: This study hypothesized that, in experimental mild acute respiratory distress syndrome, lung damage caused by high tidal volume (VT) could be attenuated if VT increased slowly enough to progressively reduce mechanical heterogeneity and to allow the epithelial and endothelial cells, as well as the extracellular matrix of the lung to adapt. For this purpose, different strategies of approaching maximal VT were tested. METHODS: Sixty-four Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 h, animals were randomly assigned to receive mechanical ventilation with VT = 6 ml/kg for 2 h (control); VT = 6 ml/kg during hour 1 followed by an abrupt increase to VT = 22 ml/kg during hour 2 (no adaptation time); VT = 6 ml/kg during the first 30 min followed by a gradual VT increase up to 22 ml/kg for 30 min, then constant VT = 22 ml/kg during hour 2 (shorter adaptation time); and a more gradual VT increase, from 6 to 22 ml/kg during hour 1 followed by VT = 22 ml/kg during hour 2 (longer adaptation time). All animals were ventilated with positive end-expiratory pressure of 3 cm H2O. Nonventilated animals were used for molecular biology analysis. RESULTS: At 2 h, diffuse alveolar damage score and heterogeneity index were greater in the longer adaptation time group than in the control and shorter adaptation time animals. Gene expression of interleukin-6 favored the shorter (median [interquartile range], 12.4 [9.1-17.8]) adaptation time compared with longer (76.7 [20.8 to 95.4]; P = 0.02) and no adaptation (65.5 [18.1 to 129.4]) time (P = 0.02) strategies. Amphiregulin, metalloproteinase-9, club cell secretory protein-16, and syndecan showed similar behavior. CONCLUSIONS: In experimental mild acute respiratory distress syndrome, lung damage in the shorter adaptation time group compared with the no adaptation time group was attenuated in a time-dependent fashion by preemptive adaptation of the alveolar epithelial cells and extracellular matrix. Extending the adaptation period increased cumulative power and did not prevent lung damage, because it may have exposed animals to injurious strain earlier and for a longer time, thereby negating any adaptive benefit.


Asunto(s)
Lesión Pulmonar/prevención & control , Volumen de Ventilación Pulmonar , Adaptación Fisiológica , Animales , Interleucina-6/genética , Masculino , Respiración con Presión Positiva , Ratas , Ratas Wistar , Síndrome de Dificultad Respiratoria/complicaciones , Volumen de Ventilación Pulmonar/fisiología
2.
Anesthesiology ; 128(6): 1193-1206, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29489470

RESUMEN

BACKGROUND: The authors hypothesized that low tidal volume (VT) would minimize ventilator-induced lung injury regardless of the degree of mechanical power. The authors investigated the impact of power, obtained by different combinations of VT and respiratory rate (RR), on ventilator-induced lung injury in experimental mild acute respiratory distress syndrome (ARDS). METHODS: Forty Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 h, 32 rats were randomly assigned to be mechanically ventilated (2 h) with a combination of different VT (6 ml/kg and 11 ml/kg) and RR that resulted in low and high power. Power was calculated as energy (ΔP,L/E,L) × RR (ΔP,L = transpulmonary driving pressure; E,L = lung elastance), and was threefold higher in high than in low power groups. Eight rats were not mechanically ventilated and used for molecular biology analysis. RESULTS: Diffuse alveolar damage score, which represents the severity of edema, atelectasis, and overdistension, was increased in high VT compared to low VT, in both low (low VT: 11 [9 to 14], high VT: 18 [15 to 20]) and high (low VT: 19 [16 to 25], high VT: 29 [27 to 30]) power groups. At high VT, interleukin-6 and amphiregulin expressions were higher in high-power than in low-power groups. At high power, amphiregulin and club cell protein 16 expressions were higher in high VT than in low VT. Mechanical energy and power correlated well with diffuse alveolar damage score and interleukin-6, amphiregulin, and club cell protein 16 expression. CONCLUSIONS: In experimental mild ARDS, even at low VT, high mechanical power promoted ventilator-induced lung injury. To minimize ventilator-induced lung injury, low VT should be combined with low power.


Asunto(s)
Síndrome de Dificultad Respiratoria/fisiopatología , Mecánica Respiratoria/fisiología , Mucosa Respiratoria/fisiopatología , Volumen de Ventilación Pulmonar/fisiología , Animales , Distribución Aleatoria , Ratas , Ratas Wistar , Síndrome de Dificultad Respiratoria/patología , Mucosa Respiratoria/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA