Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cell ; 65(4): 644-658.e5, 2017 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-28212750

RESUMEN

Protein function originates from a cooperation of structural rigidity, dynamics at different timescales, and allostery. However, how these three pillars of protein function are integrated is still only poorly understood. Here we show how these pillars are connected in Protein Tyrosine Phosphatase 1B (PTP1B), a drug target for diabetes and cancer that catalyzes the dephosphorylation of numerous substrates in essential signaling pathways. By combining new experimental and computational data on WT-PTP1B and ≥10 PTP1B variants in multiple states, we discovered a fundamental and evolutionarily conserved CH/π switch that is critical for positioning the catalytically important WPD loop. Furthermore, our data show that PTP1B uses conformational and dynamic allostery to regulate its activity. This shows that both conformational rigidity and dynamics are essential for controlling protein activity. This connection between rigidity and dynamics at different timescales is likely a hallmark of all enzyme function.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Dominio Catalítico , Secuencia Conservada , Cristalografía , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Genotipo , Humanos , Cinética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación , Resonancia Magnética Nuclear Biomolecular , Fenotipo , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Relación Estructura-Actividad
2.
Biochemistry ; 57(40): 5797-5806, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30207151

RESUMEN

Sugar cane defensin 5 (Sd5) is a small antifungal protein, whose structure is held together by four conserved disulfide bridges. Sd5 and other proteins sharing a cysteine-stabilized α-ß (CSαß) fold lack a regular hydrophobic core. Instead, they are stabilized by tertiary contacts formed by surface-exposed hydrophilic and hydrophobic residues. Despite excessive cross-links, Sd5 exhibits complex millisecond conformational dynamics involving all secondary structure elements. We used Carr-Purcell-Meiboom-Gill (CPMG) NMR relaxation dispersion (RD) measurements performed at different temperatures and denaturant concentrations to probe brief excursions of Sd5 to a sparsely populated "excited" state. Temperature-dependent CPMG RD experiments reveal that the excited state is enthalpically unfavorable, suggesting a rearrangement of stabilizing contacts formed by surface-exposed side chains and/or secondary structure, while the experiments performed at different denaturant concentrations suggest a decrease in accessible surface area of Sd5 in the excited state. The measured backbone 15N chemical shift changes point to a global conformational rearrangement such as a potential α- to ß-transition of the Sd5 α-helix or other major secondary structure reorganization and concomitant conformational changes in other parts of the protein. Overall, the emerging picture of Sd5 dynamics suggests this protein can populate two alternative well-ordered conformational states, with the excited conformer being more compact than the native state and having a distinct secondary structure and side-chain arrangements. The observation of an energetically unfavorable yet more compact excited state reveals a remarkable evolution of the CSαß fold to expose and reorganize hydrophobic residues, which enables the creation of versatile binding sites.


Asunto(s)
Defensinas/química , Evolución Molecular , Simulación de Dinámica Molecular , Pisum sativum/química , Proteínas de Plantas/química , Pliegue de Proteína , Cisteína/química , Dominios Proteicos , Estructura Secundaria de Proteína
3.
J Biol Chem ; 292(21): 8786-8796, 2017 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-28389559

RESUMEN

The kinase interaction motif (KIM) family of protein-tyrosine phosphatases (PTPs) includes hematopoietic protein-tyrosine phosphatase (HePTP), striatal-enriched protein-tyrosine phosphatase (STEP), and protein-tyrosine phosphatase receptor type R (PTPRR). KIM-PTPs bind and dephosphorylate mitogen-activated protein kinases (MAPKs) and thereby critically modulate cell proliferation and differentiation. PTP activity can readily be diminished by reactive oxygen species (ROS), e.g. H2O2, which oxidize the catalytically indispensable active-site cysteine. This initial oxidation generates an unstable sulfenic acid intermediate that is quickly converted into either a sulfinic/sulfonic acid (catalytically dead and irreversible inactivation) or a stable sulfenamide or disulfide bond intermediate (reversible inactivation). Critically, our understanding of ROS-mediated PTP oxidation is not yet sufficient to predict the molecular responses of PTPs to oxidative stress. However, identifying distinct responses will enable novel routes for PTP-selective drug design, important for managing diseases such as cancer and Alzheimer's disease. Therefore, we performed a detailed biochemical and molecular study of all KIM-PTP family members to determine their H2O2 oxidation profiles and identify their reversible inactivation mechanism(s). We show that despite having nearly identical 3D structures and sequences, each KIM-PTP family member has a unique oxidation profile. Furthermore, we also show that whereas STEP and PTPRR stabilize their reversibly oxidized state by forming an intramolecular disulfide bond, HePTP uses an unexpected mechanism, namely, formation of a reversible intermolecular disulfide bond. In summary, despite being closely related, KIM-PTPs significantly differ in oxidation profiles. These findings highlight that oxidation protection is critical when analyzing PTPs, for example, in drug screening.


Asunto(s)
Proteínas Tirosina Fosfatasas/química , Alcaloides , Oxidación-Reducción , Piperidinas , Dominios Proteicos , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo
4.
Biochemistry ; 53(18): 2890-902, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24738963

RESUMEN

One of the ancestral features of thioredoxins is the presence of a water cavity. Here, we report that a largely hydrated, conserved, buried aspartic acid in the water cavity modulates the dynamics of the interacting loops of yeast thioredoxin 1 (yTrx1). It is well-established that the aspartic acid, Asp24 for yTrx1, works as a proton acceptor in the reduction of the target protein. We propose a complementary role for Asp24 of coupling hydration and conformational motion of the water cavity and interacting loops. The intimate contact between the water cavity and the interacting loops means that motion at the water cavity will affect the interacting loops and vice versa. The D24N mutation alters the conformational equilibrium for both the oxidized and reduced states, quenching the conformational motion in the water cavity. By measuring the hydration and molecular dynamics simulation of wild-type yTrx1 and the D24N mutant, we showed that Asn24 is more exposed to water than Asp24 and the water cavity is smaller in the mutant, closing the inner part of the water cavity. We discuss how the conformational equilibrium contributes to the mechanism of catalysis and H(+) exchange.


Asunto(s)
Tiorredoxinas/química , Asparagina/química , Ácido Aspártico/química , Enlace de Hidrógeno , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Protones , Saccharomyces cerevisiae/genética , Tiorredoxinas/genética , Agua
5.
Free Radic Biol Med ; 194: 147-159, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36462629

RESUMEN

Reactive oxygen species (ROS), released as byproducts of mitochondrial metabolism or as products of NADPH oxidases and other processes, can directly oxidize the active-site cysteine (Cys) residue of protein tyrosine phosphatases (PTPs) in a mammalian cell. Robust degradation of irreversibly oxidized PTPs is essential for preventing accumulation of these permanently inactive enzymes. However, the mechanism underlying the degradation of these proteins was unknown. In this study, we found that the active-site Cys215 of endogenous PTP1B is sulfonated in H9c2 cardiomyocytes under physiological conditions. The sulfonation of Cys215 led PTP1B to exhibit a conformational change, and drive the subsequent ubiquitination and degradation of this protein. We then discovered that Cullin1, an E3 ligase, interacts with the Cys215-sulfonated PTP1B. The functional impairment of Cullin1 prevented PTP1B from oxidation-dependent ubiquitination and degradation in H9c2 cells. Moreover, delivery of the terminally oxidized PTP1B resulted in proteotoxicity-caused injury in the affected cells. In conclusion, we elucidate how sulfonation of the active-site Cys215 can direct turnover of endogenous PTP1B through the engagement of ubiquitin-proteasome system. These data highlight a novel mechanism that maintains PTP homeostasis in cardiomyocytes with constitutive ROS production.


Asunto(s)
Cisteína , Ubiquitina-Proteína Ligasas , Animales , Cisteína/metabolismo , Especies Reactivas de Oxígeno , Proteínas Tirosina Fosfatasas , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Mamíferos/metabolismo
6.
Arch Biochem Biophys ; 505(1): 105-11, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20887708

RESUMEN

2,4-Dinitrophenol (DNP) increases the affinity of myosin for actin and accelerates its Mg(2+)ATPase activity, suggesting that it acts on a region of the myosin head that transmits conformational changes to actin- and ATP-binding sites. The binding site/s for DNP are unknown; however similar hydrophobic compounds bind to the 50-kDa subfragment of the myosin head, near the actin-binding interface. In this region, a helix-loop-helix motif contains Lys553, which is specifically labeled with the fluorescent probe 6-[fluorescein-5(and 6)-carboxamido] hexanoic acid succinimidyl ester (FHS). This reaction is sensitive to conformational changes in the helix-loop-helix and the labeling efficiency was reduced when S1 was bound to actin, DNP or nucleotide analogs. The nucleotide analogs had a range of effects (PPi>ADP·AlF(4)(-)>ADP) irrespective of the open-closed state of switch 2. The greatest reduction in labeling was in the presence of actin or DNP. When we measured the effect of each ligand on the fluorescence of FHS previously attached to S1, only DNP quenched the emission. Together, the results suggest that the helix-loop-helix region is flexible, it is part of the communication pathway between the ATP- and actin-binding sites of myosin and it is proximal to the region of myosin where DNP binds.


Asunto(s)
2,4-Dinitrofenol/farmacología , Colorantes/farmacología , Lisina/metabolismo , Subfragmentos de Miosina/metabolismo , Actinas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Fluorescencia , Colorantes Fluorescentes , Secuencias Hélice-Asa-Hélice , Subfragmentos de Miosina/química , Unión Proteica , Conformación Proteica/efectos de los fármacos , Conejos
7.
Cells ; 10(2)2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671793

RESUMEN

Flight dispersal represents a key aspect of the evolutionary and ecological success of insects, allowing escape from predators, mating, and colonization of new niches. The huge energy demand posed by flight activity is essentially met by oxidative phosphorylation (OXPHOS) in flight muscle mitochondria. In insects, mitochondrial ATP supply and oxidant production are regulated by several factors, including the energy demand exerted by changes in adenylate balance. Indeed, adenylate directly regulates OXPHOS by targeting both chemiosmotic ATP production and the activities of specific mitochondrial enzymes. In several organisms, cytochrome c oxidase (COX) is regulated at transcriptional, post-translational, and allosteric levels, impacting mitochondrial energy metabolism, and redox balance. This review will present the concepts on how COX function contributes to flying insect biology, focusing on the existing examples in the literature where its structure and activity are regulated not only by physiological and environmental factors but also how changes in its activity impacts insect biology. We also performed in silico sequence analyses and determined the structure models of three COX subunits (IV, VIa, and VIc) from different insect species to compare with mammalian orthologs. We observed that the sequences and structure models of COXIV, COXVIa, and COXVIc were quite similar to their mammalian counterparts. Remarkably, specific substitutions to phosphomimetic amino acids at critical phosphorylation sites emerge as hallmarks on insect COX sequences, suggesting a new regulatory mechanism of COX activity. Therefore, by providing a physiological and bioenergetic framework of COX regulation in such metabolically extreme models, we hope to expand the knowledge of this critical enzyme complex and the potential consequences for insect dispersal.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Animales , Insectos , Oxidación-Reducción , Fosforilación Oxidativa
8.
Biomol NMR Assign ; 12(1): 5-9, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28856606

RESUMEN

The sequence-specific backbone assignment of hematopoietic protein tyrosine phosphatase (HePTP; PTPN7) in presence of vanadate has been determined, based on triple-resonance experiments using uniformly [13C,15N]-labeled protein. These assignments facilitate further studies of HePTP in the presence of inhibitors to target leukemia and provide further insights into the function of protein tyrosine phosphatases.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Resonancia Magnética Nuclear Biomolecular , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/química , Vanadatos/farmacología , Proteínas Tirosina Fosfatasas/metabolismo
9.
ACS Omega ; 2(11): 8313-8318, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29214238

RESUMEN

SHP2 (Src homology 2 domain-containing protein tyrosine phosphatase 2; PTPN11) is a ubiquitous multidomain, nonreceptor protein tyrosine phosphatase (PTP) that plays an important role in diseases such as cancer, diabetes, and Noonan syndrome (NS). NS is one of the most common genetic disorders associated with congenital heart disease, and approximately half of the patients with Noonan syndrome have gain-of-function mutations in SHP2. One of the most common NS mutations is N308D. The activity of SHP2, like that of most PTPs, is reversibly inactivated by reactive oxygen species (ROS). However, the molecular basis of this inactivation and the consequences of NS-related mutations in PTPN11 on ROS-mediated inhibition are poorly understood. Here, we investigated the mechanistic and structural details of the reversible oxidation of the NS variant SHP2N308D. We show that SHP2N308D is more sensitive to oxidation when compared with wild-type SHP2. We also show that although the SHP2N308D catalytic domain can be reactivated by dithiothreitol as effectively as the wild-type, full-length SHP2N308D is only poorly reactivated by comparison. To understand the mechanism of oxidation at a molecular level, we determined the crystal structure of oxidized SHP2N308D. The structure shows that the catalytic Cys459 residue forms a disulfide bond with Cys367, which confirms that Cys367 functions as the "backdoor" cysteine in SHP2. Together, our data suggest that the reversible oxidation of SHP2 contributes negligibly, if at all, to the symptoms associated with NS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA