Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Langmuir ; 35(24): 7617-7630, 2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-31117719

RESUMEN

Detailed analysis of the adsorption of oxalic acid ions, that is, oxalate and hydrogenoxalate, on the rutile (110) surface was carried out using molecular dynamics augmented by free energy calculations and supported by ab initio calculations. The predicted adsorption on perfect nonhydroxylated and hydroxylated surfaces with surface charge density from neutral to +0.208 C/m2 corresponding to pH values of about 6 and 3.7, respectively, agrees with experimental adsorption data and charge-distribution multisite ion complexation model predictions obtained using the most favorable surface complexes identified in our simulations. We found that outer-sphere complexes are the most favorable, owing to strong hydrogen binding of oxalic acid ions with surface hydroxyls and physisorbed water. The monodentate complex, the most stable among inner-sphere complexes, was about 15 kJ/mol higher in energy, but separated by a large energy barrier. Other inner-sphere complexes, including some previously suggested in the literature as likely adsorption structures such as bidentate and chelate complexes, were found to be unstable both by classical and by ab initio modeling. Both the surfaces and (hydrogen)oxalate ions were modeled using charges scaled to 75% of the nominal values in accord with the electronic continuum theory and our earlier parameterization of (hydrogen)oxalate ions, which showed that nominal charges exaggerate ion-water interactions.

2.
Langmuir ; 35(24): 7631-7640, 2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-30852900

RESUMEN

Here, we characterize oxalate adsorption by rutile in NaCl media (0.03 and 0.30 m) and between pH 3 and 10 over a wide temperature range which includes the near hydrothermal regime (10-150 °C). Oxalate adsorption increases with decreasing pH (as is typical for anion binding by metal oxides), but systematic trends with respect to ionic strength or temperature are absent. Surface complexation modeling (SCM) following the CD-MUSIC formalism, and as constrained by molecular modeling simulations and IR spectroscopic results from the literature, is used to interpret the adsorption data. The molecular modeling simulations, which include molecular dynamics simulations supported by free-energy and ab initio calculations, reveal that oxalate binding is outer-sphere, albeit via strong hydrogen bonds. Conversely, previous IR spectroscopic results conclude that various types of inner-sphere complexes often predominate. SCMs constrained by both the molecular modeling results and the IR spectroscopic data were developed, and both fit the adsorption data equally well. We conjecture that the discrepancy between the molecular simulation and IR spectroscopic results is due to the nature of the rutile surfaces investigated, that is, the perfect (110) crystal faces for the molecular simulations and various rutile powders for the IR spectroscopy studies. Although the (110) surface plane is most often dominant for rutile powders, a variety of steps, kinks, and other types of surface defects are also invariably present. Hence, we speculate that surface defect sites may be primarily responsible for inner-sphere oxalate adsorption, although further study is necessary to prove or disprove this hypothesis.

3.
Environ Sci Technol ; 53(11): 6352-6361, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31062960

RESUMEN

A multistart optimization algorithm for surface complexation equilibrium parameters (MUSE) was applied to a large and diverse data set for chromate adsorption on iron (oxy)hydroxides (ferrihydrite and goethite). Within the Basic Stern and the charge-distribution multisite complexation (CD-MUSIC) framework, chromate binding constants and the Stern Layer capacitance were optimized simultaneously to develop a consistent parameter set for surface complexation models. This analysis resulted in three main conclusions regarding the model parameters: (a) There is no single set of parameter values that describes such diverse data sets when modeled independently. (b) Parameter differences among the data sets are mainly due to different amounts of total sites, i.e., surface area and surface coverages, rather than structural differences between the iron (oxy)hydroxides. (c) Unified equilibrium constants can be extracted if total site dependencies are taken into account. The implementation of the MUSE algorithm automated the process of optimizing the parameters in an objective and consistent manner and facilitated the extraction of predictive relationships for unified equilibrium constants. The extracted unified parameters can be implemented in reactive transport modeling in the field by either adopting the appropriate values for each surface coverage or by estimating error bounds for different conditions. The evaluation of a forward model with unified parameters successfully predicted chromate adsorption for a range of capacitance values.


Asunto(s)
Cromatos , Adsorción , Compuestos Férricos
4.
Langmuir ; 33(20): 4934-4941, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28459581

RESUMEN

Flow microcalorimetry was used to investigate the energetics associated with Rb+, K+, Na+, Cl-, and NO3- exchange at the rutile-water interface. Heats of exchange reflected differences in bulk hydration/dehydration enthalpies (Na+ > K+ > Rb+, and Cl- > NO3-) such that exchanging Na+ or Cl- from the surface was exothermic, reflecting their greater bulk hydration enthalpies. Exchange heats were measured at pH 2, 3.25, 5.8, and 11 and exhibited considerable differences as well as pH dependence. These trends were rationalized with the aid of a molecularly constrained surface complexation model (SCM) that incorporated the inner-sphere binding observed for the cations on the rutile (110) surface. Explicitly accounting for the inner-sphere binding configuration differences between Rb+, K+, and Na+, as well as accompanying differences in negative surface charge development, resulted in much better agreement with measured exchange ratios than by considering bulk hydration enthalpies alone. The observation that calculated exchange ratios agreed with those measured experimentally lends additional credence to the SCM. Consequently, flow microcalorimetry and surface complexation modeling are a useful complement of techniques for probing the energetics associated with ion exchange and adsorption processes and should also serve to help validate molecular simulations of interfacial energetics.

5.
Langmuir ; 32(40): 10189-10198, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27643625

RESUMEN

The zeta potential (ZP) is an oft-reported measure of the macroscopic charge state of solid surfaces and colloidal particles in contact with solvents. However, the origin of this readily measurable parameter has remained divorced from the molecular-level processes governing the underlying electrokinetic phenomena, which limits its usefulness. Here, we connect the macroscopic measure to the microscopic realm through nonequilibrium molecular dynamics simulations of electroosmotic flow between parallel slabs of the hydroxylated (110) rutile (TiO2) surface. These simulations provided streaming mobilities, which were converted to ZP via the commonly used Helmholtz-Smoluchowski equation. A range of rutile surface charge densities (0.1 to -0.4 C/m2), corresponding to pH values between about 2.8 and 9.4, in RbCl, NaCl, and SrCl2 aqueous solutions, were modeled and compared to experimental ZPs for TiO2 particle suspensions. Simulated ZPs qualitatively agree with experiment and show that "anomalous" ZP values and inequalities between the point of zero charge derived from electrokinetic versus pH titration measurements both arise from differing co- and counterion sorption affinities. We show that at the molecular level the ZP arises from the delicate interplay of spatially varying dynamics, structure, and electrostatics in a narrow interfacial region within about 15 Å of the surface, even in dilute salt solutions. This contrasts fundamentally with continuum descriptions of such interfaces, which predict the ZP response region to be inversely related to ionic strength. In reality the properties of this interfacial region are dominated by relatively immobile and structured water. Consequently, viscosity values are substantially greater than in the bulk, and electrostatic potential profiles are oscillatory in nature.

6.
Langmuir ; 31(2): 703-13, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25517626

RESUMEN

The effect of particle size on the adsorption of Sr(2+) onto monodisperse nanometer diameter (4, 20, and 40 nm) anatase samples has been evaluated quantitatively with macroscopic experimental studies. The adsorption of Sr(2+) onto the anatase particles was evaluated by potentiometric titrations in NaCl media, at two ionic strengths (0.03 and 0.3 m), and over a wide range of pH (3-11) and surface loadings, at a temperature of 25 °C. Adsorption of Sr(2+) to the surface of the 20 and 40 nm diameter samples was similar, whereas the Sr(2+) adsorption titration curves were shallower for the 4 nm diameter samples. At high pH, the smallest particles adsorbed slightly less Sr(2+) than was adsorbed by the larger particles. At the molecular scale, density functional theory (DFT) calculations were used to evaluate the most stable Sr(2+) surface species on the (101) anatase surface (the predominant crystal face). An inner-sphere Sr-tridentate surface species was found to be the most stable. The experimental data were described with a charge distribution (CD) and multisite complexation (MUSIC) model, with a Basic Stern layer description of the electric double layer. The resulting surface complexation model explicitly incorporated the molecular-scale information from the DFT simulation results. For 20 and 40 nm diameter anatase, the CD value for the Sr-tridentate species was calculated using a bond valence interpretation of the DFT-optimized geometry. The CD value for the 4 nm sample was smaller than that for the 20 and 40 nm samples, reflecting the shallower Sr(2+) adsorption titration curves. The adsorption differences between the smallest and larger anatase particles can be rationalized by water being more highly structured near the 4 nm anatase sample and/or the Sr-tridentate surface species may require more well-developed surface terraces than are present on the 4 nm particles.

7.
Langmuir ; 29(27): 8572-83, 2013 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-23745739

RESUMEN

The effect of particle size on the primary charging behavior of a suite of monodisperse nanometer diameter (4, 20, and 40 nm) anatase samples has been quantitatively examined with macroscopic experimental studies. The experimental results were evaluated using surface complexation modeling, which explicitly incorporated corresponding molecular-scale information from density functional theory (DFT) simulation studies. Potentiometric titrations were completed in NaCl media, at five ionic strengths (from 0.005 to 0.3 m), and over a wide pH range (3-11), at a temperature of 25 °C. From the experimental results, the pH of zero net proton charge (pHznpc) for the 4 and 20 nm diameter samples was 6.42, whereas the pHznpc was 6.22 for the 40 nm sample. The slopes of the net proton charge curves increased with an increase in particle size. Multisite surface complexation and charge distribution (CD) models, with a Basic Stern layer description of the electric double layer, were developed to describe all experimental data. Fits to the experimental data included an inner-sphere Na-bidentate species, an outer-sphere Na-monodentate species, and outer-sphere Cl-monodentate species. DFT simulations found the Na-bidentate species to be the most stable species on the (101) anatase surface (the predominant crystal face). The CD value for the Na-bidentate species was calculated using a bond valence interpretation of the DFT-optimized geometry. The Stern layer capacitance value varied systematically with particle size. The collective experimental and modeling studies show that subtle differences exist in the interface reactivity of nanometer diameter anatase samples. These results should help to further elucidate an understanding of the solid-aqueous solution interface reactivity of nanosized particles.


Asunto(s)
Nanopartículas/química , Teoría Cuántica , Cloruro de Sodio/química , Titanio/química , Concentración de Iones de Hidrógeno , Modelos Moleculares , Tamaño de la Partícula , Propiedades de Superficie
8.
Environ Sci Technol ; 46(21): 11896-904, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23078178

RESUMEN

The surface complexation behavior of ofloxacin (OFX), a zwitterionic fluoroquinolone antibiotic, to nano-anatase titanium dioxide (TiO(2)) was characterized. OFX adsorption in aqueous TiO(2) suspensions was measured as a function of pH, OFX concentration, and electrolyte type and concentration, and structural information was derived from in situ spectroscopic observations. An ultraviolet-visible spectral red shift upon OFX adsorption indicated formation of inner-sphere coordination complexes. Fourier transform infrared spectra of TiO(2)-adsorbed OFX were invariable over a wide concentration and pH range and were similar to measured spectra of dissolved species wherein the carboxylate group is deprotonated. A charge distribution surface complexation model constrained by spectroscopic observations was developed to describe macroscopic adsorption trends. A tridentate mode of adsorption involving bridging bidentate inner-sphere coordination of the deprotonated carboxylate group and hydrogen bonding through the adjacent carbonyl group on the quinoline ring resulted in successful predictions of observed adsorption trends. In NaClO(4) electrolyte, spectroscopic data and model fitting suggested that OFX ion pairing with ClO(4)(-) enhanced adsorption under acidic conditions. Moreover, comparison of OFX adsorption data with the pH trend in the kinetics of OFX degradation by visible light (λ > 400 nm) photocatalysis suggested that adsorbed OFX-ClO(4)(-) ion pairs inhibit photodegradation.


Asunto(s)
Antibacterianos/química , Nanopartículas del Metal/química , Ofloxacino/química , Titanio/química , Adsorción , Catálisis , Concentración de Iones de Hidrógeno , Luz , Modelos Químicos , Oxidación-Reducción , Fotólisis , Propiedades de Superficie , Titanio/efectos de la radiación
9.
J Colloid Interface Sci ; 504: 538-548, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28605717

RESUMEN

Cations in natural solutions significantly impact interfacial processes, particularly dissolution and surface charge measurements for quartz and silica, which are amongst the most naturally abundant and technologically important solids. Thermodynamic parameters for cation-specific interfacial reactions have heretofore been mostly derived instead of directly measured experimentally. This work investigates the energetics of adsorption and exchange reactions of alkali metal (M+) and alkaline earth (M2+) cations with the quartz surface by flow adsorption microcalorimetry, in tandem with in-situ pH measurements. The magnitudes of the heats of adsorption and exchange were found to increase along the Hofmeister series i.e., Li+

10.
J Colloid Interface Sci ; 428: 63-72, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24910036

RESUMEN

Fluoroquinolone (FQ) antibacterials are aquatic contaminants of emerging concern (CEC), and adsorption to mineral surfaces is expected to play an important role in the fate, transport, and treatment of FQs. This study characterizes and models the adsorption of a zwitterionic FQ, ofloxacin (OFX), to goethite (α-FeOOH) over a wide range of pH (3-11), OFX concentration (20-500 µM), and electrolyte compositions (0.001-0.1M NaCl and NaClO4). Comparing OFX adsorption to structural analogues demonstrates that the carboxylate group is essential for binding to goethite. ATR-FTIR measurements indicate that FQs complex to goethite surfaces through carboxylate and carbonyl oxygen atoms, and that ClO4(-) co-adsorbs with OFX. Adsorption of the zwitterionic OFX increases with increasing ionic strength and is enhanced in NaClO4 relative to NaCl electrolyte, whereas adsorption of a non-zwitterionic analogue is insensitive to ionic strength. A CD-MUSIC (charge distribution-multisite complexation) model, incorporating multiple modes of surface complexation constrained by spectroscopic measurements and the crystallographic distribution of goethite surface sites, yields accurate predictions over wide-ranging solution conditions. According to the model, OFX adsorbs predominantly by inner-sphere complexation on terminal surfaces of the rod-shaped goethite crystals in NaCl electrolyte, and OFX-ClO4(-) ion pairing in NaClO4 induces formation of additional inner- and outer-sphere surface complexes on multiple crystal faces of goethite.


Asunto(s)
Antibacterianos/aislamiento & purificación , Contaminantes Ambientales/aislamiento & purificación , Fluoroquinolonas/aislamiento & purificación , Compuestos de Hierro/química , Minerales/química , Adsorción , Iones/aislamiento & purificación , Modelos Químicos , Ofloxacino/aislamiento & purificación , Concentración Osmolar , Propiedades de Superficie
11.
J Hazard Mater ; 258-259: 109-15, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23708453

RESUMEN

Irrigation with concentrated animal feeding operation (CAFO) wastewater on croplands has been identified as a major source discharging steroid hormones into the environment. To assess the potential risks on this irrigation practice, the degradation kinetics and mechanisms of 17α-estradiol-3-sulfate were systematically investigated in aqueous solutions blended with dairy wastewater. Dissipation of the conjugated estrogen was dominated by biodegradation under both aerobic and anaerobic conditions. The half-lives for the biodegradation of 17α-estradiol-3-sulfate under aerobic and anaerobic conditions from 15 to 45°C varied from 1.70 to 415 d and 22.5 to 724 d, respectively. Under the same incubation conditions, anaerobic degradation rates of 17α-estradiol-3-sulfate were significantly less than aerobic degradation rates, suggesting that this hormone contaminant may accumulate in anaerobic or anoxic environments. Three degradation products were characterized under both aerobic and anaerobic conditions at 25°C, with estrone-3-sulfate and 17α-estradiol identified as primary metabolites and estrone identified as a secondary metabolite. However, the major degradation mechanisms under aerobic and anaerobic conditions were distinctly different. For aerobic degradation, oxidation at position C17 of the 17α-estradiol-3-sulfate ring was a major degradation mechanism. In contrast, deconjugation of the 17α-estradiol-3-sulfate thio-ester bond at position C3 was a major process initiating degradation under anaerobic conditions.


Asunto(s)
Estradiol/análogos & derivados , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Bacterias Aerobias/metabolismo , Bacterias Anaerobias/metabolismo , Biodegradación Ambiental , Biotransformación , Estradiol/química , Cinética , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/metabolismo
12.
J Agric Food Chem ; 59(18): 10176-81, 2011 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-21863813

RESUMEN

Ceftiofur is a third-generation cephalosporin antibiotic that has been widely used to treat bacterial infections in concentrated animal feeding operations (CAFOs). Land application of CAFO waste may lead to the loading of ceftiofur residues and its metabolites to the environment. To understand the potential contamination of the antibiotic in the environment, the degradation kinetics and mechanisms of ceftiofur in solutions blended with and without the recycled water derived from a beef farm were investigated. The transformation of ceftiofur in aqueous solutions in the presence of the CAFO recycled water was the combined process of hydrolysis and biodegradation. The total degradation rates of ceftiofur at 15 °C, 25 °C, 35 °C, and 45 °C varied from 0.4-2.8×10(-3), 1.4-4.4×10(-3), 6.3-11×10(-3), and 11-17×10(-3) h(-1), respectively, in aqueous solutions blended with 1 to 5% CAFO recycled water. Hydrolysis of ceftiofur increased with incubation temperature from 15 to 45 °C. The biodegradation rates of ceftiofur were also temperature-dependent and increased with the application amounts of the recycled CAFO water. Cef-aldehyde and desfuroylceftiofur (DFC) were identified as the main biodegradation and hydrolysis products, respectively. This result suggests that the primary biodegradation mechanism of ceftiofur was the cleavage of the ß-lactam ring, while hydrolytic cleavage occurred at the thioester bond. Unlike DFC and ceftiofur, cef-aldehyde does not contain a ß-lactam ring and has less antimicrobial activity, indicating that the biodegradation of ceftiofur in animal wastewater may mitigate the potentially adverse impact of the antibiotic to the environment.


Asunto(s)
Antibacterianos , Cefalosporinas/metabolismo , Drogas Veterinarias , Agua/química , Agricultura/métodos , Animales , Biodegradación Ambiental , Bovinos , Cefalosporinas/química , Hidrólisis , Cinética , Reciclaje , Soluciones
13.
Langmuir ; 25(18): 10852-62, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19673509

RESUMEN

The acid-base properties of cassiterite (alpha-SnO2) surfaces at 10-50 degrees C were studied using potentiometric titrations of powder suspensions in aqueous NaCl and RbCl media. The proton sorption isotherms exhibited common intersection points in the pH range of 4.0-4.5 under all conditions, and the magnitude of charging was similar but not identical in NaCl and RbCl. The hydrogen bonding configuration at the oxide-water interface, obtained from classical molecular dynamics (MD) simulations, was analyzed in detail, and the results were explicitly incorporated in calculations of protonation constants for the reactive surface sites using the revised MUSIC model. The calculations indicated that the terminal SnOH2 group is more acidic than the bridging Sn2OH group, with protonation constants (log KH) of 3.60 and 5.13 at 25 degrees C, respectively. This is contrary to the situation on the isostructural alpha-TiO2 (rutile), apparently because of the difference in electronegativity between Ti and Sn. MD simulations and speciation calculations indicated considerable differences in the speciation of Na+ and Rb+, despite the similarities in overall charging. Adsorbed sodium ions are almost exclusively found in bidentate surface complexes, whereas adsorbed rubidium ions form comparable numbers of bidentate and tetradentate complexes. Also, the distribution of adsorbed Na+ between the different complexes shows a considerable dependence on the surface charge density (pH), whereas the distribution of adsorbed Rb+ is almost independent of pH. A surface complexation model (SCM) capable of accurately describing both the measured surface charge and the MD-predicted speciation of adsorbed Na+/Rb+ was formulated. According to the SCM, the deprotonated terminal group (SnOH(-0.40)) and the protonated bridging group (Sn2OH+0.36) dominate the surface speciation over the entire pH range of this study (2.7-10). The complexation of medium cations increases significantly with increasing negative surface charge, and at pH 10, roughly 40% of the terminal sites are predicted to form cation complexes, whereas anion complexation is minor throughout the studied pH range.


Asunto(s)
Cloruros/química , Rubidio/química , Cloruro de Sodio/química , Compuestos de Estaño/química , Adsorción , Cationes/química , Electrólitos/química , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Modelos Químicos , Concentración Osmolar , Potenciometría , Polvos , Protones , Temperatura , Titanio/química
14.
Langmuir ; 24(21): 12331-9, 2008 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-18842061

RESUMEN

The detailed solvation structure at the (110) surface of rutile (alpha-TiO2) in contact with bulk liquid water has been obtained primarily from experimentally verified classical molecular dynamics (CMD) simulations of the ab initio-optimized surface in contact with SPC/E water. The results are used to explicitly quantify H-bonding interactions, which are then used within the refined MUSIC model framework to predict surface oxygen protonation constants. Quantum mechanical molecular dynamics (QMD) simulations in the presence of freely dissociable water molecules produced H-bond distributions around deprotonated surface oxygens very similar to those obtained by CMD with nondissociable SPC/E water, thereby confirming that the less computationally intensive CMD simulations provide accurate H-bond information. Utilizing this H-bond information within the refined MUSIC model, along with manually adjusted Ti-O surface bond lengths that are nonetheless within 0.05 A of those obtained from static density functional theory (DFT) calculations and measured in X-ray reflectivity experiments (as well as bulk crystal values), give surface protonation constants that result in a calculated zero net proton charge pH value (pHznpc) at 25 degrees C that agrees quantitatively with the experimentally determined value (5.4+/-0.2) for a specific rutile powder dominated by the (110) crystal face. Moreover, the predicted pHznpc values agree to within 0.1 pH unit with those measured at all temperatures between 10 and 250 degrees C. A slightly smaller manual adjustment of the DFT-derived Ti-O surface bond lengths was sufficient to bring the predicted pHznpcvalue of the rutile (110) surface at 25 degrees C into quantitative agreement with the experimental value (4.8+/-0.3) obtained from a polished and annealed rutile (110) single crystal surface in contact with dilute sodium nitrate solutions using second harmonic generation (SHG) intensity measurements as a function of ionic strength. Additionally, the H-bond interactions between protolyzable surface oxygen groups and water were found to be stronger than those between bulk water molecules at all temperatures investigated in our CMD simulations (25, 150 and 250 degrees C). Comparison with the protonation scheme previously determined for the (110) surface of isostructural cassiterite (alpha-SnO2) reveals that the greater extent of H-bonding on the latter surface, and in particular between water and the terminal hydroxyl group (Sn-OH) results in the predicted protonation constant for that group being lower than for the bridged oxygen (Sn-O-Sn), while the reverse is true for the rutile (110) surface. These results demonstrate the importance of H-bond structure in dictating surface protonation behavior, and that explicit use of this solvation structure within the refined MUSIC model framework results in predicted surface protonation constants that are also consistent with a variety of other experimental and computational data.

15.
Langmuir ; 22(26): 10972-82, 2006 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-17154573

RESUMEN

The chemical and electrostatic interactions at mineral-water interfaces are of fundamental importance in many geochemical, materials science, and technological processes; however, the effects of particle size at the nanoscale on these interactions are poorly known. Therefore, comprehensive experimental and characterization studies were completed, to begin to assess the effects of particle size on the surface reactivity and charging of metal-oxide nanoparticles in aqueous solutions. Commercially available crystalline anatase (TiO2) particles were characterized using neutron and X-ray small-angle scattering, electron microscopy, and laser diffraction techniques. The 4 nm primary nanoparticles were found to exist almost exclusively in a hierarchy of agglomerated structures. Potentiometric and electrophoretic mobility titrations were completed in NaCl media at ionic strengths from (0.005 to 0.3) mol/kg, and 25 degrees C, with these two experimental techniques matched as closely as the different procedures permitted. The pH of zero net proton charge (pHznpc, from potentiometric titration) and isoelectric point pH value (pHiep, from electrophoretic mobility titrations) were both in near perfect agreement (6.85 +/- 0.02). At high ionic strengths the apparent pHznpc value was offset slightly toward lower pH values, which suggests some specific adsorption of the Na+ electrolyte ions. Proton-induced surface charge curves of nanocrystalline anatase were very similar to those of larger rutile crystallites when expressed relative to their respective pHznpc values, indicating that the development of positive and negative surface charge away from the pHznpc for nanocrystalline anatase is similar to that of larger TiO2 crystallites.


Asunto(s)
Nanopartículas/química , Titanio/química , Electroquímica/métodos , Propiedades de Superficie
16.
J Colloid Interface Sci ; 239(2): 314-327, 2001 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-11426995

RESUMEN

The revised multisite complexation (MUSIC) model of T. Hiemstra et al. (J. Colloid Interface Sci. 184, 680 (1996)) is the most thoroughly developed approach to date that explicitly considers the protonation behavior of the various types of hydroxyl groups known to exist on mineral surfaces. We have extended their revised MUSIC model to temperatures other than 25 degrees C to help rationalize the adsorption data we have been collecting for various metal oxides, including rutile and magnetite to 300 degrees C. Temperature-corrected MUSIC model A constants were calculated using a consistent set of solution protonation reactions with equilibrium constants that are reasonably well known as a function of temperature. A critical component of this approach was to incorporate an empirical correction factor that accounts for the observed decrease in cation hydration number with increasing temperature. This extension of the revised MUSIC model matches our experimentally determined pH of zero net proton charge pH values (pH(znpc)) for rutile to within 0.05 pH units between 25 and 250 degrees C and for magnetite within 0.2 pH units between 50 and 290 degrees C. Moreover, combining the MUSIC-model-derived surface protonation constants with the basic Stern description of electrical double-layer structure results in a good fit to our experimental rutile surface protonation data for all conditions investigated (25 to 250 degrees C, and 0.03 to 1.0 m NaCl or tetramethylammonium chloride media). Consequently, this approach should be useful in other instances where it is necessary to describe and/or predict the adsorption behavior of metal oxide surfaces over a wide temperature range. Copyright 2001 Academic Press.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA