Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Remote Sens Environ ; 280: 113198, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36090616

RESUMEN

Remote detection and monitoring of the vegetation responses to stress became relevant for sustainable agriculture. Ongoing developments in optical remote sensing technologies have provided tools to increase our understanding of stress-related physiological processes. Therefore, this study aimed to provide an overview of the main spectral technologies and retrieval approaches for detecting crop stress in agriculture. Firstly, we present integrated views on: i) biotic and abiotic stress factors, the phases of stress, and respective plant responses, and ii) the affected traits, appropriate spectral domains and corresponding methods for measuring traits remotely. Secondly, representative results of a systematic literature analysis are highlighted, identifying the current status and possible future trends in stress detection and monitoring. Distinct plant responses occurring under shortterm, medium-term or severe chronic stress exposure can be captured with remote sensing due to specific light interaction processes, such as absorption and scattering manifested in the reflected radiance, i.e. visible (VIS), near infrared (NIR), shortwave infrared, and emitted radiance, i.e. solar-induced fluorescence and thermal infrared (TIR). From the analysis of 96 research papers, the following trends can be observed: increasing usage of satellite and unmanned aerial vehicle data in parallel with a shift in methods from simpler parametric approaches towards more advanced physically-based and hybrid models. Most study designs were largely driven by sensor availability and practical economic reasons, leading to the common usage of VIS-NIR-TIR sensor combinations. The majority of reviewed studies compared stress proxies calculated from single-source sensor domains rather than using data in a synergistic way. We identified new ways forward as guidance for improved synergistic usage of spectral domains for stress detection: (1) combined acquisition of data from multiple sensors for analysing multiple stress responses simultaneously (holistic view); (2) simultaneous retrieval of plant traits combining multi-domain radiative transfer models and machine learning methods; (3) assimilation of estimated plant traits from distinct spectral domains into integrated crop growth models. As a future outlook, we recommend combining multiple remote sensing data streams into crop model assimilation schemes to build up Digital Twins of agroecosystems, which may provide the most efficient way to detect the diversity of environmental and biotic stresses and thus enable respective management decisions.

2.
Environ Monit Assess ; 185(6): 4775-90, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23054271

RESUMEN

Advancing land degradation in the irrigated areas of Central Asia hinders sustainable development of this predominantly agricultural region. To support decisions on mitigating cropland degradation, this study combines linear trend analysis and spatial logistic regression modeling to expose a land degradation trend in the Khorezm region, Uzbekistan, and to analyze the causes. Time series of the 250-m MODIS NDVI, summed over the growing seasons of 2000-2010, were used to derive areas with an apparent negative vegetation trend; this was interpreted as an indicator of land degradation. About one third (161,000 ha) of the region's area experienced negative trends of different magnitude. The vegetation decline was particularly evident on the low-fertility lands bordering on the natural sandy desert, suggesting that these areas should be prioritized in mitigation planning. The results of logistic modeling indicate that the spatial pattern of the observed trend is mainly associated with the level of the groundwater table (odds = 330 %), land-use intensity (odds = 103 %), low soil quality (odds = 49 %), slope (odds = 29 %), and salinity of the groundwater (odds = 26 %). Areas, threatened by land degradation, were mapped by fitting the estimated model parameters to available data. The elaborated approach, combining remote-sensing and GIS, can form the basis for developing a common tool for monitoring land degradation trends in irrigated croplands of Central Asia.


Asunto(s)
Agricultura/estadística & datos numéricos , Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente/métodos , Fenómenos Geológicos , Agricultura/métodos , Sistemas de Información Geográfica , Agua Subterránea/química , Modelos Logísticos , Tecnología de Sensores Remotos , Salinidad , Análisis Espacio-Temporal , Uzbekistán , Movimientos del Agua
3.
Remote Sens (Basel) ; 13(9): 1748, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36081647

RESUMEN

Hyperspectral cameras onboard unmanned aerial vehicles (UAVs) have recently emerged for monitoring crop traits at the sub-field scale. Different physical, statistical, and hybrid methods for crop trait retrieval have been developed. However, spectra collected from UAVs can be confounded by various issues, including illumination variation throughout the crop growing season, the effect of which on the retrieval performance is not well understood at present. In this study, four retrieval methods are compared, in terms of retrieving the leaf area index (LAI), fractional vegetation cover (fCover), and canopy chlorophyll content (CCC) of potato plants over an agricultural field for six dates during the growing season. We analyzed: (1) The standard look-up table method (LUTstd), (2) an improved (regularized) LUT method that involves variable correlation (LUTreg), (3) hybrid methods, and (4) random forest regression without (RF) and with (RFexp) the exposure time as an additional explanatory variable. The Soil-Leaf-Canopy (SLC) model was used in association with the LUT-based inversion and hybrid methods, while the statistical modelling methods (RF and RFexp) relied entirely on in situ data. The results revealed that RFexp was the best-performing method, yielding the highest accuracies, in terms of the normalized root mean square error (NRMSE), for LAI (5.36%), fCover (5.87%), and CCC (15.01%). RFexp was able to reduce the effects of illumination variability and cloud shadows. LUTreg outperformed the other two retrieval methods (hybrid methods and LUTstd), with an NRMSE of 9.18% for LAI, 10.46% for fCover, and 12.16% for CCC. Conversely, LUTreg led to lower accuracies than those derived from RF for LAI (5.51%) and for fCover (6.23%), but not for CCC (16.21%). Therefore, the machine learning approaches-in particular, RF-appear to be the most promising retrieval methods for application to UAV-based hyperspectral data.

4.
Sci Total Environ ; 693: 133374, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31376755

RESUMEN

In order to consider the effects of land use, and the land cover changes it causes, on ecosystem services in life cycle assessment (LCA), a new methodology is proposed and applied to calculate midpoint and endpoint characterization factors. To do this, a cause-effect chain was established in line with conceptual models of ecosystem services to describe the impacts of land use and related land cover changes. A high-resolution, spatially explicit and temporally dynamic modeling framework that integrates land use and ecosystem services models was developed and used as an impact characterization model to simulate that cause-effect chain. Characterization factors (CFs) were calculated and regionalized at the scales of Luxembourg and its municipalities, taken as a case to show the advantages of the modeling approach. More specifically, the calculated CFs enable the impact assessment of six land cover types on six ecosystem functions and two final ecosystem services. A mapping and comparison exercise of these CFs allowed us to identify spatial trade-offs and synergies between ecosystem services due to possible land cover changes. Ultimately, the proposed methodology can offer a solution to overcome a number of methodological limitations that still exist in the characterization of impacts on ecosystem services in LCA, implying a rethinking of the modeling of land use in life cycle inventory.

6.
PLoS One ; 10(10): e0138985, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26465139

RESUMEN

BACKGROUND: Straw-coloured fruit bats (Eidolon helvum) migrate over vast distances across the African continent, probably following seasonal bursts of resource availability. This causes enormous fluctuations in population size, which in turn may influence the bats' impact on local ecosystems. We studied the movement ecology of this central-place forager with state-of-the-art GPS/acceleration loggers and concurrently monitored the seasonal fluctuation of the colony in Accra, Ghana. Habitat use on the landscape scale was assessed with remote sensing data as well as ground-truthing of foraging areas. PRINCIPAL FINDINGS: During the wet season population low (~ 4000 individuals), bats foraged locally (3.5-36.7 km) in urban areas with low tree cover. Major food sources during this period were fruits of introduced trees. Foraging distances almost tripled (24.1-87.9 km) during the dry season population peak (~ 150,000 individuals), but this was not compensated for by reduced resting periods. Dry season foraging areas were random with regard to urban footprint and tree cover, and food consisted almost exclusively of nectar and pollen of native trees. CONCLUSIONS AND SIGNIFICANCE: Our study suggests that straw-coloured fruit bats disperse seeds in the range of hundreds of meters up to dozens of kilometres, and pollinate trees for up to 88 km. Straw-coloured fruit bats forage over much larger distances compared to most other Old World fruit bats, thus providing vital ecosystem services across extensive landscapes. We recommend increased efforts aimed at maintaining E. helvum populations throughout Africa since their keystone role in various ecosystems is likely to increase due to the escalating loss of other seed dispersers as well as continued urbanization and habitat fragmentation.


Asunto(s)
Migración Animal/fisiología , Quirópteros/fisiología , Conducta Alimentaria/fisiología , Vuelo Animal/fisiología , Acelerometría , Animales , Dieta , Femenino , Cadena Alimentaria , Frutas , Sistemas de Información Geográfica , Ghana , Humanos , Masculino , Dispersión de las Plantas/fisiología , Tecnología de Sensores Remotos , Estaciones del Año , Árboles , Urbanización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA