Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nucleic Acids Res ; 51(17): 9101-9121, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37486771

RESUMEN

Cohesin is a highly conserved, multiprotein complex whose canonical function is to hold sister chromatids together to ensure accurate chromosome segregation. Cohesin association with chromatin relies on the Scc2-Scc4 cohesin loading complex that enables cohesin ring opening and topological entrapment of sister DNAs. To better understand how sister chromatid cohesion is regulated, we performed a proteomic screen in budding yeast that identified the Isw1 chromatin remodeler as a cohesin binding partner. In addition, we found that Isw1 also interacts with Scc2-Scc4. Lack of Isw1 protein, the Ioc3 subunit of ISW1a or Isw1 chromatin remodeling activity resulted in increased accumulation of cohesin at centromeres and pericentromeres, suggesting that ISW1a may promote efficient translocation of cohesin from the centromeric site of loading to neighboring regions. Consistent with the role of ISW1a in the chromatin organization of centromeric regions, Isw1 was found to be recruited to centromeres. In its absence we observed changes in the nucleosomal landscape at centromeres and pericentromeres. Finally, we discovered that upon loss of RSC functionality, ISW1a activity leads to reduced cohesin binding and cohesion defect. Taken together, our results support the notion of a key role of chromatin remodelers in the regulation of cohesin distribution on chromosomes.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Cromátides/genética , Cromatina/genética , Cromatina/metabolismo , Proteómica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cohesinas
2.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674035

RESUMEN

In the face of flourishing industrialization and global trade, heavy metal and metalloid contamination of the environment is a growing concern throughout the world. The widespread presence of highly toxic compounds of arsenic, antimony, and cadmium in nature poses a particular threat to human health. Prolonged exposure to these toxins has been associated with severe human diseases, including cancer, diabetes, and neurodegenerative disorders. These toxins are known to induce analogous cellular stresses, such as DNA damage, disturbance of redox homeostasis, and proteotoxicity. To overcome these threats and improve or devise treatment methods, it is crucial to understand the mechanisms of cellular detoxification in metal and metalloid stress. Membrane proteins are key cellular components involved in the uptake, vacuolar/lysosomal sequestration, and efflux of these compounds; thus, deciphering the multilevel regulation of these proteins is of the utmost importance. In this review, we summarize data on the mechanisms of arsenic, antimony, and cadmium detoxification in the context of membrane proteome. We used yeast Saccharomyces cerevisiae as a eukaryotic model to elucidate the complex mechanisms of the production, regulation, and degradation of selected membrane transporters under metal(loid)-induced stress conditions. Additionally, we present data on orthologues membrane proteins involved in metal(loid)-associated diseases in humans.


Asunto(s)
Metaloides , Saccharomyces cerevisiae , Estrés Fisiológico , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Metaloides/metabolismo , Metaloides/toxicidad , Humanos , Estrés Fisiológico/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Arsénico/toxicidad , Arsénico/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
EMBO J ; 37(18)2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30111537

RESUMEN

DNA damage tolerance (DDT) mechanisms facilitate replication resumption and completion when DNA replication is blocked by bulky DNA lesions. In budding yeast, template switching (TS) via the Rad18/Rad5 pathway is a favored DDT pathway that involves usage of the sister chromatid as a template to bypass DNA lesions in an error-free recombination-like process. Here, we establish that the Snf2 family translocase Irc5 is a novel factor that promotes TS and averts single-stranded DNA persistence during replication. We demonstrate that, during replication stress, Irc5 enables replication progression by assisting enrichment of cohesin complexes, recruited in an Scc2/Scc4-dependent fashion, near blocked replication forks. This allows efficient formation of sister chromatid junctions that are crucial for error-free DNA lesion bypass. Our results support the notion of a key role of cohesin in the completion of DNA synthesis under replication stress and reveal that the Rad18/Rad5-mediated DDT pathway is linked to cohesin enrichment at sites of perturbed replication via the Snf2 family translocase Irc5.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Daño del ADN , Replicación del ADN , ADN de Hongos/biosíntesis , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Sistema Libre de Células/metabolismo , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/genética , ADN Helicasas , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cohesinas
4.
FEMS Yeast Res ; 22(1)2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35323907

RESUMEN

In a high-throughput yeast two-hybrid screen of predicted coiled-coil motif interactions in the Saccharomyces cerevisiae proteome, the protein Etp1 was found to interact with the yeast AP-1-like transcription factors Yap8, Yap1 and Yap6. Yap8 plays a crucial role during arsenic stress since it regulates expression of the resistance genes ACR2 and ACR3. The function of Etp1 is not well understood but the protein has been implicated in transcription and protein turnover during ethanol stress, and the etp1∆ mutant is sensitive to ethanol. In this current study, we investigated whether Etp1 is implicated in Yap8-dependent functions. We show that Etp1 is required for optimal growth in the presence of trivalent arsenite and for optimal expression of the arsenite export protein encoded by ACR3. Since Yap8 is the only known transcription factor that regulates ACR3 expression, we investigated whether Etp1 regulates Yap8. Yap8 ubiquitination, stability, nuclear localization and ACR3 promoter association were unaffected in etp1∆ cells, indicating that Etp1 affects ACR3 expression independently of Yap8. Thus, Etp1 impacts gene expression under arsenic and other stress conditions but the mechanistic details remain to be elucidated.


Asunto(s)
Arsénico , Arsenitos , Proteínas de Saccharomyces cerevisiae , Arsénico/metabolismo , Arsenitos/metabolismo , Arsenitos/farmacología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Etanol/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Nucleic Acids Res ; 48(10): 5426-5441, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32356892

RESUMEN

Activator protein 1 (AP-1) is one of the largest families of basic leucine zipper (bZIP) transcription factors in eukaryotic cells. How AP-1 proteins achieve target DNA binding specificity remains elusive. In Saccharomyces cerevisiae, the AP-1-like protein (Yap) family comprises eight members (Yap1 to Yap8) that display distinct genomic target sites despite high sequence homology of their DNA binding bZIP domains. In contrast to the other members of the Yap family, which preferentially bind to short (7-8 bp) DNA motifs, Yap8 binds to an unusually long DNA motif (13 bp). It has been unclear what determines this unique specificity of Yap8. In this work, we use molecular and biochemical analyses combined with computer-based structural design and molecular dynamics simulations of Yap8-DNA interactions to better understand the structural basis of DNA binding specificity determinants. We identify specific residues in the N-terminal tail preceding the basic region, which define stable association of Yap8 with its target promoter. We propose that the N-terminal tail directly interacts with DNA and stabilizes Yap8 binding to the 13 bp motif. Thus, beside the core basic region, the adjacent N-terminal region contributes to alternative DNA binding selectivity within the AP-1 family.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , ADN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , ADN de Hongos/química , Proteínas de Transporte de Membrana/genética , Simulación de Dinámica Molecular , Mutación , Regiones Promotoras Genéticas , Unión Proteica , Elementos de Respuesta , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33925940

RESUMEN

Antimony is a toxic metalloid with poorly understood mechanisms of toxicity and uncertain carcinogenic properties. By using a combination of genetic, biochemical and DNA damage assays, we investigated the genotoxic potential of trivalent antimony in the model organism Saccharomyces cerevisiae. We found that low doses of Sb(III) generate various forms of DNA damage including replication and topoisomerase I-dependent DNA lesions as well as oxidative stress and replication-independent DNA breaks accompanied by activation of DNA damage checkpoints and formation of recombination repair centers. At higher concentrations of Sb(III), moderately increased oxidative DNA damage is also observed. Consistently, base excision, DNA damage tolerance and homologous recombination repair pathways contribute to Sb(III) tolerance. In addition, we provided evidence suggesting that Sb(III) causes telomere dysfunction. Finally, we showed that Sb(III) negatively effects repair of double-strand DNA breaks and distorts actin and microtubule cytoskeleton. In sum, our results indicate that Sb(III) exhibits a significant genotoxic activity in budding yeast.


Asunto(s)
Antimonio/toxicidad , Daño del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , ADN/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Daño del ADN/genética , Reparación del ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo I/metabolismo , Estrés Oxidativo/genética , Recombinación Genética/efectos de los fármacos , Recombinación Genética/genética , Reparación del ADN por Recombinación/efectos de los fármacos , Reparación del ADN por Recombinación/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Telómero/metabolismo
7.
Plant J ; 95(6): 988-1003, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29932267

RESUMEN

The plant metal tolerance protein family (MTP) includes 12 members that have been classified into three phylogenetically different subgroups - Zn-cation diffusion facilitator (CDF), Fe/Zn-CDF and Mn-CDF - based on their putative metal specificity. To date, only members belonging to the Zn-CDF or Mn-CDF group have been characterized functionally. The plant Fe/Zn-CDF subgroup includes two proteins, MTP6 and MTP7, but their function and metal specificity have not been confirmed. In this study we showed that cucumber CsMTP7 is a highly specific mitochondrial Fe importer that is able to confer yeast tolerance to Fe excess through increased accumulation of Fe in the mitochondria. We also demonstrated that CsMTP7 contributes to the increased accumulation of Fe in the mitochondria of Arabidopsis thaliana protoplasts. The transcripts and mitochondrial levels of CsMTP7 and ferritin - the iron-storing protein - are significantly increased in cucumber roots in response to Fe excess. This finding suggests that CsMTP7 and ferritin work in concert to accumulate Fe in plant mitochondria. As genes that encode orthologous proteins have been identified in phylogenetically distant organisms, including Archaea, cyanobacteria, humans and plants, but not in yeast, we concluded that the MTP7-mediated mitochondrial Fe accumulation may be conserved in the species, and express mitochondrial ferritin for mitochondrial Fe storage.


Asunto(s)
Cucumis sativus/metabolismo , Hierro/metabolismo , Mitocondrias/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis , Cucumis sativus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Análisis de Secuencia de ADN
8.
J Exp Bot ; 70(1): 285-300, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30304441

RESUMEN

Members of the cation diffusion facilitator (CDF) family have been identified in all kingdoms of life. They have been divided into three subgroups, namely Zn-CDF, Fe/Zn-CDF, and Mn-CDF, based on their putative specificity to transported metal ions. The plant metal tolerance protein 6 (MTP6) proteins fall into the Fe/Zn-CDF subgroup; however, their function in iron/zinc transport has not yet been confirmed. Here, we characterized the MTP6 protein from cucumber, Cucumis sativus. When expressed in yeast and in protoplasts isolated from Arabidopsis cells, CsMTP6 localized in mitochondria and contributed to the efflux of Fe and Mn from these organelles. Immunolocalization of CsMTP6 in cucumber membranes confirmed this association with mitochondria. Root expression and protein levels of CsMTP6 were significantly up-regulated in conditions of Fe deficiency and excess, but were not affected by Mn availability. These results indicate that MTP6 proteins contribute to the distribution of Fe and Mn between the cytosol and mitochondria of plant cells, and are regulated by Fe to maintain mitochondrial and cytosolic iron homeostasis under varying conditions of Fe availability.


Asunto(s)
Proteínas de Transporte de Catión/genética , Cucumis sativus/fisiología , Hierro/fisiología , Manganeso/fisiología , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Cucumis sativus/genética , Homeostasis , Mitocondrias/fisiología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alineación de Secuencia
9.
Nucleic Acids Res ; 45(11): 6404-6416, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28383696

RESUMEN

Accurate chromosome segregation is essential for every living cell as unequal distribution of chromosomes during cell division may result in genome instability that manifests in carcinogenesis and developmental disorders. Irc5 from Saccharomyces cerevisiae is a member of the conserved Snf2 family of ATP-dependent DNA translocases and its function is poorly understood. Here, we identify Irc5 as a novel interactor of the cohesin complex. Irc5 associates with Scc1 cohesin subunit and contributes to cohesin binding to chromatin. Disruption of IRC5 decreases cohesin levels at centromeres and chromosome arms, causing premature sister chromatid separation. Moreover, reduced cohesin occupancy at the rDNA region in cells lacking IRC5 leads to the loss of rDNA repeats. We also show that the translocase activity of Irc5 is required for its function in cohesion pathway. Finally, we demonstrate that in the absence of Irc5 both the level of chromatin-bound Scc2, a member of cohesin loading complex, and physical interaction between Scc1 and Scc2 are reduced. Our results suggest that Irc5 is an auxiliary factor that is involved in cohesin association with chromatin.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Cromosomas Fúngicos/metabolismo , ADN Ribosómico/genética , Estabilidad Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Intercambio de Cromátides Hermanas , Cohesinas
10.
Biochim Biophys Acta Biomembr ; 1859(1): 117-125, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27836640

RESUMEN

Acr3 is a plasma membrane transporter, a member of the bile/arsenite/riboflavin transporter (BART) superfamily, which confers high-level resistance to arsenicals in the yeast Saccharomyces cerevisiae. We have previously shown that the yeast Acr3 acts as a low affinity As(III)/H+ and Sb(III)/H+ antiporter. We have also identified several amino acid residues that are localized in putative transmembrane helices (TM) and appeared to be critical for the Acr3 activity. In the present study, the topology of Acr3 was investigated by insertion of glycosylation and factor Xa protease cleavage sites at predicted hydrophilic regions. The analysis of the glycosylation pattern and factor Xa cleavage products of resulting Acr3 fusion constructs provide evidence supporting a topological model of Acr3 with 10 TM segments and cytoplasmically oriented N- and C-terminal domains. Next, we investigated the role of the hydrophilic loop connecting TM8 and TM9, the large size of which is unique to members of the yeast Acr3 family of metalloid transporters. We found that a 28 amino acid deletion in this region does not affect Acr3 folding, trafficking substrate binding, or transport activity. Finally, we constructed a homology-based structural model of Acr3 using the crystal structure of the Yersinia frederiksenii homologue of the human bile acid sodium symporter ASBT.


Asunto(s)
Arsenitos/química , Membrana Celular/química , Proteínas de Transporte de Membrana/química , Proteínas Recombinantes de Fusión/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Arsenitos/metabolismo , Sitios de Unión , Membrana Celular/metabolismo , Cristalografía por Rayos X , Expresión Génica , Glicosilación , Cinética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Mutagénesis , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína , Especificidad por Sustrato , beta-Fructofuranosidasa/química , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo
11.
Mol Syst Biol ; 12(12): 892, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27979908

RESUMEN

A major rationale for the advocacy of epigenetically mediated adaptive responses is that they facilitate faster adaptation to environmental challenges. This motivated us to develop a theoretical-experimental framework for disclosing the presence of such adaptation-speeding mechanisms in an experimental evolution setting circumventing the need for pursuing costly mutation-accumulation experiments. To this end, we exposed clonal populations of budding yeast to a whole range of stressors. By growth phenotyping, we found that almost complete adaptation to arsenic emerged after a few mitotic cell divisions without involving any phenotypic plasticity. Causative mutations were identified by deep sequencing of the arsenic-adapted populations and reconstructed for validation. Mutation effects on growth phenotypes, and the associated mutational target sizes were quantified and embedded in data-driven individual-based evolutionary population models. We found that the experimentally observed homogeneity of adaptation speed and heterogeneity of molecular solutions could only be accounted for if the mutation rate had been near estimates of the basal mutation rate. The ultrafast adaptation could be fully explained by extensive positive pleiotropy such that all beneficial mutations dramatically enhanced multiple fitness components in concert. As our approach can be exploited across a range of model organisms exposed to a variety of environmental challenges, it may be used for determining the importance of epigenetic adaptation-speeding mechanisms in general.


Asunto(s)
Arsénico/farmacología , Proteínas Bacterianas/genética , Epigénesis Genética , Mutación , Saccharomycetales/crecimiento & desarrollo , Adaptación Fisiológica , Evolución Molecular , Aptitud Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Genéticos , Saccharomycetales/efectos de los fármacos , Saccharomycetales/genética , Selección Genética , Análisis de Secuencia de ADN , Biología de Sistemas/métodos
12.
J Biol Chem ; 290(25): 15717-15729, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-25963145

RESUMEN

Plant copper P1B-type ATPases appear to be crucial for maintaining copper homeostasis within plant cells, but until now they have been studied mostly in model plant systems. Here, we present the molecular and biochemical characterization of two cucumber copper ATPases, CsHMA5.1 and CsHMA5.2, indicating a different function for HMA5-like proteins in different plants. When expressed in yeast, CsHMA5.1 and CsHMA5.2 localize to the vacuolar membrane and are activated by monovalent copper or silver ions and cysteine, showing different affinities to Cu(+) (Km ∼1 or 0.5 µM, respectively) and similar affinity to Ag(+) (Km ∼2.5 µM). Both proteins restore the growth of yeast mutants sensitive to copper excess and silver through intracellular copper sequestration, indicating that they contribute to copper and silver detoxification. Immunoblotting with specific antibodies revealed the presence of CsHMA5.1 and CsHMA5.2 in the tonoplast of cucumber cells. Interestingly, the root-specific CsHMA5.1 was not affected by copper stress, whereas the widely expressed CsHMA5.2 was up-regulated or down-regulated in roots upon copper excess or deficiency, respectively. The copper-induced increase in tonoplast CsHMA5.2 is consistent with the increased activity of ATP-dependent copper transport into tonoplast vesicles isolated from roots of plants grown under copper excess. These data identify CsHMA5.1 and CsHMA5.2 as high affinity Cu(+) transporters and suggest that CsHMA5.2 is responsible for the increased sequestration of copper in vacuoles of cucumber root cells under copper excess.


Asunto(s)
Adenosina Trifosfatasas , Cucumis sativus , Membranas Intracelulares , Proteínas de Transporte de Membrana , Proteínas de Plantas , Vacuolas , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Bases , Cobre/metabolismo , Cucumis sativus/enzimología , Cucumis sativus/genética , Membranas Intracelulares/enzimología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vacuolas/enzimología , Vacuolas/genética
13.
Plant J ; 84(6): 1045-58, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26485215

RESUMEN

Members of the plant metal tolerance protein (MTP) family have been classified into three major groups - Zn-CDF, Mn-CDF and Zn/Fe-CDF - however, the selectivity of most of the MTPs has not been confirmed yet. Cucumber gene CsMTP9 encoding a putative CDF transporter homologous to members of the Mn-CDF cluster is expressed exclusively in roots. The relative abundance of CsMTP9 transcript and protein in roots is significantly increased under Mn excess and Cd. Immunolocalization with specific antibodies revealed that CsMTP9 is a plasma membrane transporter that localizes to the inner PM domain of root endodermal cells. The plasma membrane localization of CsMTP9 was confirmed by the expression of the fusion proteins of GFP (green fluorescent protein) and CsMTP9 in yeast and protoplasts prepared from Arabidopsis cells. In yeast, CsMTP9 transports Mn(2+) and Cd(2+) via a proton-antiport mechanism with an apparent Km values of approximately 10 µm and 2.5 µm for Mn(2+) and Cd(2+) , respectively. In addition, CsMTP9 expression in yeast rescues the Mn- and Cd-hypersensitive phenotypes through the enhanced efflux of Mn(2+) and Cd(2+) from yeast cells. Similarly, the overexpression of CsMTP9 in A. thaliana confers increased resistance of plants to Mn excess and Cd but not to other heavy metals and leads to the enhanced translocation of manganese and cadmium from roots to shoots. These findings indicate that CsMTP9 is a plasma membrane H(+) -coupled Mn(2+) and Cd(2+) antiporter involved in the efflux of manganese and cadmium from cucumber root cells by the transport of both metals from endodermis into vascular cylinder.


Asunto(s)
Antiportadores/metabolismo , Cadmio/metabolismo , Cucumis sativus/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Manganeso/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Antiportadores/genética , Transporte Biológico/fisiología , Cadmio/toxicidad , Membrana Celular , Manganeso/toxicidad , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Saccharomyces/metabolismo
14.
Mol Microbiol ; 98(1): 162-74, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26123064

RESUMEN

Acr3p is an As(III)/H(+) antiporter from Saccharomyces cerevisiae belonging to the bile/arsenite/riboflavin transporter superfamily. We have previously found that Cys151 located in the middle of the fourth transmembrane segment (TM4) is critical for antiport activity, suggesting that As(III) might interact with a thiol group during the translocation process. In order to identify functionally important residues involved in As(III)/H(+) exchange, we performed a systematic alanine-replacement analysis of charged/polar and aromatic residues that are conserved in the Acr3 family and located in putative transmembrane segments. Nine residues (Asn117, Trp130, Arg150, Trp158, Asn176, Arg230, Tyr290, Phe345, Asn351) were found to be critical for proper folding and trafficking of Acr3p to the plasma membrane. In addition, we found that replacement of highly conserved Phe266 (TM7), Phe352 (TM9), Glu353 (TM9) and Glu380 (TM10) with Ala abolished transport activity of Acr3p, while mutation of Ser349 (TM9) to Ala significantly reduced the As(III)/H(+) exchange, suggesting an important role of these residues in the transport mechanism. Detailed mutational analysis of Glu353 and Glu380 revealed that the negatively charged residues located in the middle of transmembrane segments TM9 and TM10 are crucial for antiport activity. We also discuss a hypothetical model of the Acr3p transport mechanism.


Asunto(s)
Antiportadores/metabolismo , Arsénico/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Alanina/metabolismo , Secuencia de Aminoácidos , Arsénico/química , Arsenitos/metabolismo , Bilis/metabolismo , Transporte Biológico , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Mutagénesis Sitio-Dirigida , Unión Proteica , Transporte de Proteínas , Riboflavina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
16.
Biochim Biophys Acta ; 1838(3): 747-55, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24291645

RESUMEN

The yeast transporter Acr3p is a low affinity As(III)/H(+) and Sb(III)/H(+) antiporter located in the plasma membrane. It has been shown for bacterial Acr3 proteins that just a single cysteine residue, which is located in the middle of the fourth transmembrane region and conserved in all members of the Acr3 family, is essential for As(III) transport activity. Here, we report a systematic mutational analysis of all nine cysteine residues present in the Saccharomyces cerevisiae Acr3p. We found that mutagenesis of highly conserved Cys151 resulted in a complete loss of metalloid transport function. In addition, lack of Cys90 and Cys169, which are conserved in eukaryotic members of Acr3 family, impaired Acr3p trafficking to the plasma membrane and greatly reduced As(III) efflux, respectively. Mutagenesis of five other cysteines in Acr3p resulted in moderate reduction of As(III) transport capacities and sorting perturbations. Our data suggest that interaction of As(III) with multiple thiol groups in the yeast Acr3p may facilitate As(III) translocation across the plasma membrane.


Asunto(s)
Arsenitos/metabolismo , Cisteína/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Transporte Biológico , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo
17.
Biochim Biophys Acta ; 1839(11): 1295-306, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25234620

RESUMEN

All organisms need to sense and respond to a range of stress conditions. In this study, we used transcriptional profiling to identify genes and cellular processes that are responsive during arsenite and tert-butyl hydroperoxide exposure in Kluyveromyces lactis. Many arsenite-responsive genes encode proteins involved in redox processes, protein folding and stabilization, and transmembrane transport. The majority of peroxide-responsive genes encode functions related to transcription, translation, redox processes, metabolism and transport. A substantial number of these stress-regulated genes contain binding motifs for the AP-1 like transcription factors KlYap1 and KlYap8. We demonstrate that KlYap8 binds to and regulates gene expression through a 13 base-pair promoter motif, and that KlYap8 provides protection against arsenite, antimonite, cadmium and peroxide toxicity. Direct transport assays show that Klyap8Δ cells accumulate more arsenic and cadmium than wild type cells and that the Klyap8Δ mutant is defective in arsenic and cadmium export. KlYap8 regulates gene expression in response to both arsenite and peroxide, and might cooperate with KlYap1 in regulation of specific gene targets. Comparison of KlYap8 with its Saccharomyces cerevisiae orthologue ScYap8 indicates that KlYap8 senses and responds to multiple stress signals whereas ScYap8 is only involved in the response to arsenite and antimonite. Thus, our data suggest that functional specialization of ScYap8 has occurred after the whole genome duplication event. This is the first genome-wide stress response analysis in K. lactis and the first demonstration of KlYap8 function.


Asunto(s)
Arsenitos/farmacología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Proteínas Fúngicas/fisiología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Kluyveromyces/efectos de los fármacos , Kluyveromyces/genética , Estrés Fisiológico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas Fúngicas/genética , Kluyveromyces/metabolismo , Análisis por Micromatrices , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Transcriptoma
18.
Plant Cell Environ ; 38(6): 1127-41, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25210955

RESUMEN

P1B-ATPases (heavy metal ATPases, HMAs) constitute a multigenic subfamily of P-ATPases involved in the transport of monovalent and divalent heavy metals in plant cells. Here, we present the organization of genes encoding the HMA family in the cucumber genome and report the function and biochemical properties of two cucumber proteins homologous to the HMA2-4-like plant HMAs. Eight genes encoding putative P1B -ATPases were identified in the cucumber genome. Among them, CsHMA3 was predominantly expressed in roots and up-regulated by Pb, Zn and Cd excess, whereas the CsHMA4 transcript was most abundant in roots and flowers of cucumber plants, and elevated under Pb and Zn excess. Expression of CsHMA3 in Saccharomyces cerevisiae enhanced yeast tolerance to Cd and Pb, whereas CsHMA4 conferred increased resistance of yeast cells to Cd and Zn. Immunostaining with specific antibodies raised against cucumber proteins revealed tonoplast localization of CsHMA3 and plasma membrane localization of CsHMA4 in cucumber root cells. Kinetic studies of CsHMA3 and CsHMA4 in yeast membranes indicated differing heavy metal cation affinities of these two proteins. Altogether, the results suggest an important role of CsHMA3 and CsHMA4 in Cd and Pb detoxification and Zn homeostasis in cucumber cells.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cucumis sativus/enzimología , Metales Pesados/metabolismo , Proteínas de Plantas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Secuencia de Bases , Cadmio/metabolismo , Membrana Celular/enzimología , Cucumis sativus/genética , Cucumis sativus/metabolismo , Flores/enzimología , Genes de Plantas/genética , Homeostasis , Plomo/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raíces de Plantas/enzimología , Plantas Modificadas Genéticamente/metabolismo , Saccharomyces cerevisiae/metabolismo , Zinc/metabolismo
19.
J Exp Bot ; 66(3): 1001-15, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25422498

RESUMEN

Metal-tolerance proteins (MTPs) are divalent cation transporters that have been shown to be essential for metal homeostasis and tolerance in model plants and hyperaccumulators. Due to the lack of genomic resources, studies on MTPs in cultivated crops are lacking. Here, we present the first functional characterization of genes encoding cucumber proteins homologous to MTP1 and MTP4 transporters. CsMTP1 expression was ubiquitous in cucumber plants, whereas CsMTP4 mRNA was less abundant and was not detected in the generative parts of the flowers. When expressed in yeast, CsMTP1 and CsMTP4 were able to complement the hypersensitivity of mutant strains to Zn and Cd through the increased sequestration of metals within vacuoles using the transmembrane electrochemical gradient. Both proteins formed oligomers at the vacuolar membranes of yeast and cucumber cells and localized in Arabidopsis protoplasts, consistent with their function in vacuolar Zn and Cd sequestration. Changes in the abundance of CsMTP1 and CsMTP4 transcripts and proteins in response to elevated Zn and Cd, or to Zn deprivation, suggested metal-induced transcriptional, translational, and post-translational modifications of protein activities. The differences in the organ expression and affinity of both proteins to Zn and Cd suggested that CsMTP1 and CsMTP4 may not be functionally redundant in cucumber cells.


Asunto(s)
Cadmio/metabolismo , Proteínas de Transporte de Catión/genética , Cucumis sativus/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Contaminantes del Suelo/metabolismo , Zinc/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Cucumis sativus/metabolismo , Homeostasis/efectos de los fármacos , Datos de Secuencia Molecular , Organismos Modificados Genéticamente/genética , Organismos Modificados Genéticamente/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Vacuolas/metabolismo
20.
Biochim Biophys Acta ; 1833(3): 622-8, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23228565

RESUMEN

Although it is well known that insulin controls the synthesis of glycogen from non-carbohydrates by down-regulating expression of several glyconeogenic enzymes, a mechanism of short-term inhibition of glyconeogenesis remains unknown. In recent years, we have shown that in skeletal muscle, fructose 1,6-bisphosphatase (FBPase) is a part of the hypothetical glyconeogenic complex located on sarcomeric Z-line. Here, we show that inhibition of glycogen synthase kinase-3 causes disruption of the FBPase-Z-line interactions and reduction of muscle glycogen content in vivo. The normal, striated pattern of muscle FBPase localization is also disturbed by insulin treatment but preserved when insulin is applied together with Akt inhibitor. We suggest that destabilization of FBPase-Z-line interaction is a universal cellular mechanism of glyconeogenesis down-regulation, allowing for preferential utilization of glucose for insulin-stimulated muscle glycogen synthesis.


Asunto(s)
Fructosa-Bifosfatasa/metabolismo , Gluconeogénesis/fisiología , Glucosa/metabolismo , Glucógeno/metabolismo , Músculo Esquelético/enzimología , Pez Cebra/metabolismo , Animales , Calcio/metabolismo , Regulación hacia Abajo , Fructosa/metabolismo , Gluconeogénesis/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Insulina/farmacología , Masculino , Fosforilación , Transporte de Proteínas , Ratas , Ratas Wistar , Sarcómeros/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA