Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G525-G542, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38440826

RESUMEN

The inflamed mucosa contains a complex assortment of proteases that may participate in wound healing or the development of inflammation-associated colon cancer. We sought to determine the role of protease-activated receptor 2 (PAR2) in epithelial wound healing in both untransformed and transformed colonic epithelial cells. Monolayers of primary epithelial cells derived from organoids cultivated from patient colonic biopsies and of the T84 colon cancer cell line were grown to confluence, wounded in the presence of a selective PAR2-activating peptide, and healing was visualized by live cell microscopy. Inhibitors of various signaling molecules were used to assess the relevant pathways responsible for wound healing. Activation of PAR2 induced an enhanced wound-healing response in T84 cells but not primary cells. The PAR2-enhanced wound-healing response was associated with the development of lamellipodia in cells at the wound edge, consistent with sheet migration. The response to PAR2 activation in T84 cells was completely dependent on Src kinase activity and partially dependent on Rac1 activity. The Src-associated signaling molecules, focal adhesion kinase, and epidermal growth factor receptor, which typically mediate wound-healing responses, were not involved in the PAR2 response. Experiments repeated in the presence of the inflammatory cytokines TNF and IFNγ revealed a synergistically enhanced PAR2 wound-healing response in T84s but not primary cells. The epithelial response to proteases may be different between primary and cancer cells and is accentuated in the presence of inflammatory cytokines. Our findings have implications for understanding epithelial restitution in the context of inflammatory bowel disease (IBD) and inflammation-associated colon cancer.NEW & NOTEWORTHY Protease-activated receptor 2 enhances wound healing in the T84 colon cancer cell line, but not in primary cells derived from patient biopsies, an effect that is synergistically enhanced in the presence of the inflammatory cytokines TNF and IFNγ.


Asunto(s)
Neoplasias del Colon , Receptor PAR-2 , Humanos , Línea Celular , Movimiento Celular , Neoplasias del Colon/metabolismo , Citocinas/metabolismo , Células Epiteliales/metabolismo , Inflamación/metabolismo , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/farmacología , Receptor PAR-2/metabolismo
2.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G712-G725, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38626403

RESUMEN

Gut physiology is the epicenter of a web of internal communication systems (i.e., neural, immune, hormonal) mediated by cell-cell contacts, soluble factors, and external influences, such as the microbiome, diet, and the physical environment. Together these provide the signals that shape enteric homeostasis and, when they go awry, lead to disease. Faced with the seemingly paradoxical tasks of nutrient uptake (digestion) and retarding pathogen invasion (host defense), the gut integrates interactions between a variety of cells and signaling molecules to keep the host nourished and protected from pathogens. When the system fails, the outcome can be acute or chronic disease, often labeled as "idiopathic" in nature (e.g., irritable bowel syndrome, inflammatory bowel disease). Here we underscore the importance of a holistic approach to gut physiology, placing an emphasis on intercellular connectedness, using enteric neuroimmunophysiology as the paradigm. The goal of this opinion piece is to acknowledge the pace of change brought to our field via single-cell and -omic methodologies and other techniques such as cell lineage tracing, transgenic animal models, methods for culturing patient tissue, and advanced imaging. We identify gaps in the field and hope to inspire and challenge colleagues to take up the mantle and advance awareness of the subtleties, intricacies, and nuances of intestinal physiology in health and disease by defining communication pathways between gut resident cells, those recruited from the circulation, and "external" influences such as the central nervous system and the gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Tracto Gastrointestinal , Humanos , Animales , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/fisiología , Tracto Gastrointestinal/microbiología , Microbioma Gastrointestinal/fisiología , Neuroinmunomodulación/fisiología , Sistema Nervioso Entérico/fisiología , Sistema Nervioso Entérico/inmunología
3.
J Physiol ; 601(7): 1183-1206, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36752210

RESUMEN

The enteric nervous system (ENS) regulates the motor, secretory and defensive functions of the gastrointestinal tract. Enteric neurons integrate mechanical and chemical inputs from the gut lumen to generate complex motor outputs. How intact enteric neural circuits respond to changes in the gut lumen is not well understood. We recorded intracellular calcium in live-cell confocal recordings in neurons from intact segments of mouse intestine in order to investigate neuronal response to luminal mechanical and chemical stimuli. Wnt1-, ChAT- and Calb1-GCaMP6 mice were used to record neurons from the jejunum and colon. We measured neuronal calcium response to KCl (75 mM), veratridine (10 µM), 1,1-dimethyl-4-phenylpiperazinium (DMPP; 100 µM) or luminal nutrients (Ensure®), in the presence or absence of intraluminal distension. In the jejunum and colon, distension generated by the presence of luminal content (chyme and faecal pellets, respectively) renders the underlying enteric circuit unresponsive to depolarizing stimuli. In the distal colon, high levels of distension inhibit neuronal response to KCl, while intermediate levels of distension reorganize Ca2+ response in circumferentially propagating slow waves. Mechanosensitive channel inhibition suppresses distension-induced Ca2+ elevations, and calcium-activated potassium channel inhibition restores neuronal response to KCl, but not DMPP in the distended colon. In the jejunum, distension prevents a previously unknown tetrodotoxin-resistant neuronal response to luminal nutrient stimulation. Our results demonstrate that intestinal distension regulates the excitability of ENS circuits via mechanosensitive channels. Physiological levels of distension locally silence or synchronize neurons, dynamically regulating the excitability of enteric neural circuits based on the content of the intestinal lumen. KEY POINTS: How the enteric nervous system of the gastrointestinal tract responds to luminal distension remains to be fully elucidated. Here it is shown that intestinal distension modifies intracellular calcium levels in the underlying enteric neuronal network, locally and reversibly silencing neurons in the distended regions. In the distal colon, luminal distension is integrated by specific mechanosensitive channels and coordinates the dynamics of neuronal activation within the enteric network. In the jejunum, distension suppresses the neuronal calcium responses induced by luminal nutrients. Physiological levels of distension dynamically regulate the excitability of enteric neuronal circuits.


Asunto(s)
Calcio , Sistema Nervioso Entérico , Ratones , Animales , Sistema Nervioso Entérico/fisiología , Neuronas/fisiología , Intestino Delgado , Yeyuno , Colon/fisiología , Plexo Mientérico
4.
Am J Physiol Gastrointest Liver Physiol ; 322(1): G169-G182, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34878937

RESUMEN

Mucosal and histological healing have become the gold standards for assessing the efficacy of therapy in patients living with inflammatory bowel diseases (IBD). Despite these being the accepted goals in therapy, the mechanisms that underlie the healing of the mucosa after an inflammatory insult are not well understood, and many patients fail to meet this therapeutic endpoint. Here we review the emerging evidence that mediators (e.g., prostaglandins, cytokines, proteases, reactive oxygen, and nitrogen species) and innate immune cells (e.g., neutrophils and monocytes/macrophages), that are involved in the initiation of the inflammatory response, are also key players in the mechanisms underlying mucosal healing to resolve chronic inflammation in the colon. The dual function mediators comprise an inflammation/repair program that returns damaged tissue to homeostasis. Understanding details of the dual mechanisms of these mediators and cells may provide the basis for the development of drugs that can help to stimulate epithelial repair in patients affected by IBD.


Asunto(s)
Células Epiteliales/metabolismo , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Intestinos/metabolismo , Colon/patología , Citocinas/inmunología , Células Epiteliales/patología , Homeostasis/fisiología , Humanos , Inflamación/patología , Mediadores de Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Intestinos/patología
5.
Am J Physiol Gastrointest Liver Physiol ; 323(3): G219-G238, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35787179

RESUMEN

The endocannabinoid system of the gastrointestinal tract is involved in the control of intestinal barrier function. Whether the cannabinoid 1 (CB1) receptor is expressed on the intestinal epithelium and acutely regulates barrier function has not been determined. Here, we tested the hypothesis that ligands of the CB1 receptor acutely modulate small intestinal permeability and that this is associated with altered distribution of tight junction proteins. We examined the acute effects of CB1 receptor ligands on small intestinal permeability both in chow-fed and 2-wk high-fat diet (HFD)-fed mice using Ussing chambers. We assessed the distribution of CB1 receptor and tight junction proteins using immunofluorescence and the expression of CB1 receptor using PCR. A low level of CB1 expression was found on the intestinal epithelium. CB1 receptor was highly expressed on enteric nerves in the lamina propria. Neither the CB1/CB2 agonist CP55,940 nor the CB1 neutral antagonist AM6545 altered the flux of 4kDa FITC dextran (FD4) across the jejunum or ileum of chow-fed mice. Remarkably, both CP55,940 and AM6545 reduced FD4 flux across the jejunum and ileum in HFD-fed mice that have elevated baseline intestinal permeability. These effects were absent in CB1 knockout mice. CP55,940 reduced the expression of claudin-2, whereas AM6545 had little effect on claudin-2 expression. Neither ligand altered the expression of ZO-1. Our data suggest that CB1 receptor on the intestinal epithelium regulates tight junction protein expression and restores barrier function when it is increased following exposure to a HFD for 2 wk.NEW & NOTEWORTHY The endocannabinoid system of the gastrointestinal tract regulates homeostasis by acting as brake on motility and secretion. Here we show that when exposed to a high fat diet, intestinal permeability is increased and activation of the CB1 receptor on the intestinal epithelium restores barrier function. This work further highlights the role of the endocannabinoid system in regulating intestinal homeostasis when it is perturbed.


Asunto(s)
Dieta Alta en Grasa , Mucosa Intestinal , Receptor Cannabinoide CB1 , Animales , Claudina-2/metabolismo , Dieta Alta en Grasa/efectos adversos , Endocannabinoides/fisiología , Mucosa Intestinal/fisiología , Ratones , Permeabilidad , Receptor Cannabinoide CB1/fisiología
6.
Am J Physiol Gastrointest Liver Physiol ; 318(2): G254-G264, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31709828

RESUMEN

The small intestine regulates barrier function to absorb nutrients while avoiding the entry of potentially harmful substances or bacteria. Barrier function is dynamically regulated in part by the enteric nervous system (ENS). The role of the ENS in regulating barrier function in response to luminal nutrients is not well understood. We hypothesize that the ENS regulates intestinal permeability and ion flux in the small intestine in response to luminal nutrients. Segments of jejunum and ileum from mice were mounted in Ussing chambers. Transepithelial electrical resistance (TER), short-circuit current (Isc), and permeability to 4-kDa FITC-dextran (FD4) were recorded after mucosal stimulation with either glucose, fructose, glutamine (10 mM), or 5% Intralipid. Mucosal lipopolysaccharide (1 mg/mL) was also studied. Enteric neurons were inhibited with tetrodotoxin (TTX; 0.5 µM) or activated with veratridine (10 µM). Enteric glia were inhibited with the connexin-43 blocker Gap26 (20 µM). Glucose, glutamine, Intralipid, and veratridine acutely modified Isc in the jejunum and ileum, but the effect of nutrients on Isc was insensitive to TTX. TTX, Gap26, and veratridine treatment did not affect baseline TER or permeability. Intralipid acutely decreased permeability to FD4, while LPS increased it. TTX pretreatment abolished the effect of Intralipid and exacerbated the LPS-induced increase in permeability. Luminal nutrients and enteric nerve activity both affect ion flux in the mouse small intestine acutely but independently of each other. Neither neuronal nor glial activity is required for the maintenance of baseline intestinal permeability; however, neuronal activity is essential for the acute regulation of intestinal permeability in response to luminal lipids and lipopolysaccharide.NEW & NOTEWORTHY Luminal nutrients and enteric nerve activity both affect ion transport in the mouse small intestine acutely, but independently of each other. Activation or inhibition of the enteric neurons does not affect intestinal permeability, but enteric neural activity is essential for the acute regulation of intestinal permeability in response to luminal lipids and lipopolysaccharide. The enteric nervous system regulates epithelial homeostasis in the small intestine in a time-dependent, region- and stimulus-specific manner.


Asunto(s)
Sistema Nervioso Entérico/fisiología , Absorción Intestinal/fisiología , Intestino Delgado/metabolismo , Transporte Iónico/fisiología , Nutrientes , Animales , Impedancia Eléctrica , Sistema Nervioso Entérico/metabolismo , Íleon/metabolismo , Técnicas In Vitro , Absorción Intestinal/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Transporte Iónico/efectos de los fármacos , Yeyuno/metabolismo , Lípidos/farmacología , Lipopolisacáridos/farmacología , Masculino , Ratones , Neuronas/metabolismo , Neuronas/fisiología
7.
J Biol Chem ; 293(9): 3073-3087, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29317503

RESUMEN

The gut microbiome contributes to inflammatory bowel disease (IBD), in which bacteria can be present within the epithelium. Epithelial barrier function is decreased in IBD, and dysfunctional epithelial mitochondria and endoplasmic reticulum (ER) stress have been individually associated with IBD. We therefore hypothesized that the combination of ER and mitochondrial stresses significantly disrupt epithelial barrier function. Here, we treated human colonic biopsies, epithelial colonoids, and epithelial cells with an uncoupler of oxidative phosphorylation, dinitrophenol (DNP), with or without the ER stressor tunicamycin and assessed epithelial barrier function by monitoring internalization and translocation of commensal bacteria. We also examined barrier function and colitis in mice exposed to dextran sodium sulfate (DSS) or DNP and co-treated with DAPK6, an inhibitor of death-associated protein kinase 1 (DAPK1). Contrary to our hypothesis, induction of ER stress (i.e. the unfolded protein response) protected against decreased barrier function caused by the disruption of mitochondrial function. ER stress did not prevent DNP-driven uptake of bacteria; rather, specific mobilization of the ATF6 arm of ER stress and recruitment of DAPK1 resulted in enhanced autophagic killing (xenophagy) of bacteria. Of note, epithelia with a Crohn's disease-susceptibility mutation in the autophagy gene ATG16L1 exhibited less xenophagy. Systemic delivery of the DAPK1 inhibitor DAPK6 increased bacterial translocation in DSS- or DNP-treated mice. We conclude that promoting ER stress-ATF6-DAPK1 signaling in transporting enterocytes counters the transcellular passage of bacteria evoked by dysfunctional mitochondria, thereby reducing the potential for metabolic stress to reactivate or perpetuate inflammation.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Estrés del Retículo Endoplásmico , Mitocondrias/metabolismo , Factor de Transcripción Activador 6/metabolismo , Anciano , Animales , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/efectos de los fármacos , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Femenino , Humanos , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Permeabilidad , Tunicamicina/farmacología
8.
J Pharmacol Exp Ther ; 367(2): 382-392, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30190338

RESUMEN

The mechanisms of epithelial wound healing are not completely understood, especially in the context of proteases and their receptors. It was recently shown that activation of protease-activated receptor-2 (PAR2) on intestinal epithelial cells induced the expression of cyclooxygenase-2 (COX-2), which has protective functions in the gastrointestinal tract. It was hypothesized that PAR2-induced COX-2 could enhance wound healing in intestinal epithelial cells. Caco2 cells were used to model epithelial wound healing of circular wounds. Cellular proliferation was studied with a 5-ethynyl-2'-deoxyuridine assay, and migration was studied during wound healing in the absence of proliferation. Immunofluorescence was used to visualize E-cadherin and F-actin, and the cellular transcription profile during wound healing and PAR2 activation was explored with RNA sequencing. PAR2 activation inhibited Caco2 wound healing by reducing cell migration, independently of COX-2 activity. Interestingly, even though migration was reduced, proliferation was increased. When the actin dynamics and cell-cell junctions were investigated, PAR2 activation was found to induce actin cabling and prevent the internalization of E-cadherin. To further investigate the effect of PAR2 on transcriptionally dependent wound healing, RNA sequencing was performed. This analysis revealed that PAR2 activation, in the absence of wounding, induced a similar transcriptional profile compared with wounding alone. These findings represent a novel effect of PAR2 activation on the mechanisms of epithelial cell wound healing that could influence the resolution of intestinal inflammation.


Asunto(s)
Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Cicatrización de Heridas/fisiología , Células CACO-2 , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Ciclooxigenasa 2/metabolismo , Humanos , Inflamación/metabolismo , Intestinos/fisiología , Receptor PAR-2 , Transducción de Señal/fisiología , Transcripción Genética/fisiología
9.
Am J Physiol Gastrointest Liver Physiol ; 313(5): G467-G475, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28751424

RESUMEN

Cancer cell lines have been the mainstay of intestinal epithelial experimentation for decades, due primarily to their immortality and ease of culture. However, because of the inherent biological abnormalities of cancer cell lines, many cellular biologists are currently transitioning away from these models and toward more representative primary cells. This has been particularly challenging, but recent advances in the generation of intestinal organoids have brought the routine use of primary cells within reach of most epithelial biologists. Nevertheless, even with the proliferation of publications that use primary intestinal epithelial cells, there is still a considerable amount of trial and error required for laboratories to establish a consistent and reliable method to culture three-dimensional (3D) intestinal organoids and primary epithelial monolayers. We aim to minimize the time other laboratories spend troubleshooting the technique and present a standard method for culturing primary epithelial cells. Therefore, we have described our optimized, high-yield, cost-effective protocol to grow 3D murine colonoids for more than 20 passages and our detailed methods to culture these cells as confluent monolayers for at least 14 days, enabling a wide variety of potential future experiments. By supporting and expanding on the current literature of primary epithelial culture optimization and detailed use in experiments, we hope to help enable the widespread adoption of these innovative methods and allow consistency of results obtained across laboratories and institutions.NEW & NOTEWORTHY Primary intestinal epithelial monolayers are notoriously difficult to maintain culture, even with the recent advances in the field. We describe, in detail, the protocols required to maintain three-dimensional cultures of murine colonoids and passage these primary epithelial cells to confluent monolayers in a standardized, high-yield and cost-effective manner.


Asunto(s)
Colon , Células Epiteliales , Mucosa Intestinal , Organoides , Cultivo Primario de Células/métodos , Animales , Células Cultivadas , Colon/patología , Colon/fisiología , Células Epiteliales/patología , Células Epiteliales/fisiología , Mucosa Intestinal/patología , Mucosa Intestinal/fisiología , Ratones , Organoides/patología , Organoides/fisiología
10.
Gastroenterology ; 151(5): 933-944.e3, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27480173

RESUMEN

BACKGROUND & AIMS: The 5-hydroxytryptamine receptor 4 (5-HT4R or HTR4) is expressed in the colonic epithelium but little is known about its functions there. We examined whether activation of colonic epithelial 5-HT4R protects colons of mice from inflammation. METHODS: The 5-HT4R agonist tegaserod (1 mg/kg), the 5-HT4R antagonist GR113808 (1 mg/kg), or vehicle (control) were delivered by enema to wild-type or 5-HT4R knockout mice at the onset of, or during, active colitis, induced by administration of dextran sodium sulfate or trinitrobenzene sulfonic acid. Inflammation was measured using the colitis disease activity index and by histologic analysis of intestinal tissues. Epithelial proliferation, wound healing, and resistance to oxidative stress-induced apoptosis were assessed, as was colonic motility. RESULTS: Rectal administration of tegaserod reduced the severity of colitis compared with mice given vehicle, and accelerated recovery from active colitis. Rectal tegaserod did not improve colitis in 5-HT4R knockout mice, and intraperitoneally administered tegaserod did not protect wild-type mice from colitis. Tegaserod increased proliferation of crypt epithelial cells. Stimulation of 5-HT4R increased Caco-2 cell migration and reduced oxidative stress-induced apoptosis; these actions were blocked by co-administration of the 5-HT4R antagonist GR113808. In noninflamed colons of wild-type mice not receiving tegaserod, inhibition of 5-HT4Rs resulted in signs of colitis within 3 days. In these mice, epithelial proliferation decreased and bacterial translocation to the liver and spleen was detected. Daily administration of tegaserod increased motility in inflamed colons of guinea pigs and mice, whereas administration of GR113808 disrupted motility in animals without colitis. CONCLUSIONS: 5-HT4R activation maintains motility in healthy colons of mice and guinea pigs, and reduces inflammation in colons of mice with colitis. Agonists might be developed as treatments for patients with inflammatory bowel diseases.


Asunto(s)
Colitis/metabolismo , Colon/metabolismo , Mucosa Intestinal/metabolismo , Receptores de Serotonina 5-HT4/metabolismo , Agonistas del Receptor de Serotonina 5-HT4/farmacología , Antagonistas del Receptor de Serotonina 5-HT4/farmacología , Administración Rectal , Animales , Colitis/inducido químicamente , Colitis/patología , Colitis/prevención & control , Colon/efectos de los fármacos , Colon/patología , Sulfato de Dextran , Femenino , Cobayas , Indoles/farmacología , Indoles/uso terapéutico , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Noqueados , Agonistas del Receptor de Serotonina 5-HT4/uso terapéutico , Índice de Severidad de la Enfermedad , Sulfonamidas/farmacología , Ácido Trinitrobencenosulfónico
11.
Am J Gastroenterol ; 112(6): 913-923, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28323272

RESUMEN

OBJECTIVES: The objective of this study was to determine whether constipation-predominant irritable bowel syndrome (IBS-C) is associated with changes in intestinal barrier and secretory function. METHODS: A total of 19 IBS-C patients and 18 healthy volunteers (all females) underwent saccharide excretion assay (0.1 g 13C mannitol and 1 g lactulose), measurements of duodenal and colonic mucosal barrier (transmucosal resistance (TMR), macromolecular and Escherichia coli Bio-Particle translocation), mucosal secretion (basal and acetylcholine (Ach)-evoked short-circuit current (Isc)), in vivo duodenal mucosal impedance, circulating endotoxins, and colonic tight junction gene expression. RESULTS: There were no differences in the in vivo measurements of barrier function between IBS-C patients and healthy controls: cumulative excretion of 13C mannitol (0-2 h mean (s.e.m.); IBS-C: 12.1 (0.9) mg vs. healthy: 13.2 (0.8) mg) and lactulose (8-24 h; IBS-C: 0.9 (0.5) mg vs. healthy: 0.5 (0.2) mg); duodenal impedance IBS-C: 729 (65) Ω vs. healthy: 706 (43) Ω; plasma mean endotoxin activity level IBS-C: 0.36 (0.03) vs. healthy: 0.35 (0.02); and in colonic mRNA expression of occludin, zonula occludens (ZO) 1-3, and claudins 1-12 and 14-19. The ex vivo findings were consistent, with no group differences: duodenal TMR (IBS-C: 28.2 (1.9) Ω cm2 vs. healthy: 29.8 (1.9) Ω cm2) and colonic TMR (IBS-C: 19.1 (1.1) Ω cm2 vs. healthy: 17.6 (1.7) Ω cm2); fluorescein isothiocyanate (FITC)-dextran (4 kDa) and E. coli Bio-Particle flux. Colonic basal Isc was similar, but duodenal basal Isc was lower in IBS-C (43.5 (4.5) µA cm-2) vs. healthy (56.9 (4.9) µA cm-2), P=0.05. Ach-evoked ΔIsc was similar. CONCLUSIONS: Females with IBS-C have normal colonic barrier and secretory function. Basal duodenal secretion is decreased in IBS-C.


Asunto(s)
Colon/fisiopatología , Duodeno/fisiopatología , Mucosa Intestinal/fisiopatología , Síndrome del Colon Irritable/fisiopatología , Lactulosa/metabolismo , Manitol/metabolismo , ARN Mensajero/metabolismo , Acetilcolina/farmacología , Adulto , Estudios de Casos y Controles , Agonistas Colinérgicos/farmacología , Claudinas/genética , Colon/efectos de los fármacos , Colon/patología , Estreñimiento/etiología , Duodeno/efectos de los fármacos , Duodeno/patología , Impedancia Eléctrica , Endotoxinas/sangre , Femenino , Expresión Génica , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Síndrome del Colon Irritable/complicaciones , Síndrome del Colon Irritable/genética , Persona de Mediana Edad , Ocludina/genética , Permeabilidad , Uniones Estrechas/genética , Proteínas de la Zonula Occludens/genética
12.
J Neurosci ; 35(30): 10821-30, 2015 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-26224864

RESUMEN

Patients with systemic inflammatory diseases (e.g., rheumatoid arthritis, inflammatory bowel disease, chronic liver disease) commonly develop debilitating symptoms (i.e., sickness behaviors) that arise from changes in brain function. The microbiota-gut-brain axis alters brain function and probiotic ingestion can influence behavior. However, how probiotics do this remains unclear. We have previously described a novel periphery-to-brain communication pathway in the setting of peripheral organ inflammation whereby monocytes are recruited to the brain in response to systemic TNF-α signaling, leading to microglial activation and subsequently driving sickness behavior development. Therefore, we investigated whether probiotic ingestion (i.e., probiotic mixture VSL#3) alters this periphery-to-brain communication pathway, thereby reducing subsequent sickness behavior development. Using a well characterized mouse model of liver inflammation, we now show that probiotic (VSL#3) treatment attenuates sickness behavior development in mice with liver inflammation without affecting disease severity, gut microbiota composition, or gut permeability. Attenuation of sickness behavior development was associated with reductions in microglial activation and cerebral monocyte infiltration. These events were paralleled by changes in markers of systemic immune activation, including decreased circulating TNF-α levels. Our observations highlight a novel pathway through which probiotics mediate cerebral changes and alter behavior. These findings allow for the potential development of novel therapeutic interventions targeted at the gut microbiome to treat inflammation-associated sickness behaviors in patients with systemic inflammatory diseases. SIGNIFICANCE STATEMENT: This research shows that probiotics, when eaten, can improve the abnormal behaviors (including social withdrawal and immobility) that are commonly associated with inflammation. Probiotics are able to cause this effect within the body by changing how the immune system signals the brain to alter brain function. These findings broaden our understanding of how probiotics may beneficially affect brain function in the context of inflammation occurring within the body and may open potential new therapeutic alternatives for the treatment of these alterations in behavior that can greatly affect patient quality of life.


Asunto(s)
Encéfalo/efectos de los fármacos , Conducta de Enfermedad/efectos de los fármacos , Sistema Inmunológico/efectos de los fármacos , Neuroinmunomodulación/efectos de los fármacos , Probióticos/farmacología , Animales , Conducta Animal , Encéfalo/inmunología , Modelos Animales de Enfermedad , Inflamación/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL
13.
Am J Physiol Gastrointest Liver Physiol ; 311(3): G466-79, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27492333

RESUMEN

Barrier dysfunction is a characteristic of the inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Understanding how the tight junction is modified to maintain barrier function may provide avenues for treatment of IBD. We have previously shown that the apical addition of serine proteases to intestinal epithelial cell lines causes a rapid and sustained increase in transepithelial electrical resistance (TER), but the mechanisms are unknown. We hypothesized that serine proteases increase barrier function through trafficking and insertion of tight junction proteins into the membrane, and this could enhance recovery of a disrupted monolayer after calcium switch or cytokine treatment. In the canine epithelial cell line, SCBN, we showed that matriptase, an endogenous serine protease, could potently increase TER. Using detergent solubility-based cell fractionation, we found that neither trypsin nor matriptase treatment changed levels of tight junction proteins at the membrane. In a fast calcium switch assay, serine proteases did not enhance the rate of recovery of the junction. In addition, serine proteases could not reverse barrier disruption induced by IFNγ and TNFα. We knocked down occludin in our cells using siRNA and found this prevented the serine protease-induced increase in TER. Using fluorescence recovery after photobleaching (FRAP), we found serine proteases induce a greater mobile fraction of occludin in the membrane. These data suggest that a functional tight junction is needed for serine proteases to have an effect on TER, and that occludin is a crucial tight junction protein in this mechanism.


Asunto(s)
Células Epiteliales/enzimología , Mucosa Intestinal/citología , Ocludina/metabolismo , Uniones Estrechas/fisiología , Animales , Línea Celular , Perros , Impedancia Eléctrica , Fenómenos Electrofisiológicos , Células Epiteliales/citología , Células Epiteliales/fisiología , Ocludina/genética , Transporte de Proteínas , Serina Endopeptidasas/farmacología , Serina Proteasas , Proteínas de Uniones Estrechas/metabolismo , Tripsina/farmacología
14.
Gastroenterology ; 149(2): 445-55.e3, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25865048

RESUMEN

BACKGROUND & AIMS: Disturbances in the control of ion transport lead to epithelial barrier dysfunction in patients with colitis. Enteric glia regulate intestinal barrier function and colonic ion transport. However, it is not clear whether enteric glia are involved in epithelial hyporesponsiveness. We investigated enteric glial regulation of ion transport in mice with trinitrobenzene sulfonic acid- or dextran sodium sulfate-induced colitis and in Il10(-/-) mice. METHODS: Electrically evoked ion transport was measured in full-thickness segments of colon from CD1 and Il10(-/-) mice with or without colitis in Ussing chambers. Nitric oxide (NO) production was assessed using amperometry. Bacterial translocation was investigated in the liver, spleen, and blood of mice. RESULTS: Electrical stimulation of the colon evoked a tetrodotoxin-sensitive chloride secretion. In mice with colitis, ion transport almost completely disappeared. Inhibiting inducible NO synthase (NOS2), but not neuronal NOS (NOS1), partially restored the evoked secretory response. Blocking glial function with fluoroacetate, which is not a NOS2 inhibitor, also partially restored ion transport. Combined NOS2 inhibition and fluoroacetate administration fully restored secretion. Epithelial responsiveness to vasoactive intestinal peptide was increased after enteric glial function was blocked in mice with colitis. In colons of mice without colitis, NO was produced in the myenteric plexus almost completely via NOS1. NO production was increased in mice with colitis, compared with mice without colitis; a substantial proportion of NOS2 was blocked by fluoroacetate administration. Inhibition of enteric glial function in vivo reduced the severity of trinitrobenzene sulfonic acid-induced colitis and associated bacterial translocation. CONCLUSIONS: Increased production of NOS2 in enteric glia contributes to the dysregulation of intestinal ion transport in mice with colitis. Blocking enteric glial function in these mice restores epithelial barrier function and reduces bacterial translocation.


Asunto(s)
Colitis/metabolismo , Sistema Nervioso Entérico/citología , Transporte Iónico , Neuroglía/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico/metabolismo , Animales , Traslocación Bacteriana , Colitis/inducido químicamente , Colitis/genética , Modelos Animales de Enfermedad , Estimulación Eléctrica/métodos , Fluoroacetatos/administración & dosificación , Interleucina-10/deficiencia , Interleucina-10/genética , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Plexo Mientérico/citología , Neuroglía/citología
15.
J Biol Chem ; 289(49): 34366-77, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25331954

RESUMEN

Mucosal biopsies from inflamed colon of inflammatory bowel disease patients exhibit elevated epithelial apoptosis compared with those from healthy individuals, disrupting mucosal homeostasis and perpetuating disease. Therapies that decrease intestinal epithelial apoptosis may, therefore, ameliorate inflammatory bowel disease, but treatments that specifically target apoptotic pathways are lacking. Proteinase-activated receptor-2 (PAR2), a G protein-coupled receptor activated by trypsin-like serine proteinases, is expressed on intestinal epithelial cells and stimulates mitogenic pathways upon activation. We sought to determine whether PAR2 activation and signaling could rescue colonic epithelial (HT-29) cells from apoptosis induced by proapoptotic cytokines that are increased during inflammatory bowel disease. The PAR2 agonists 2-furoyl-LIGRLO (2f-LI), SLIGKV and trypsin all significantly reduced cleavage of caspase-3, -8, and -9, poly(ADP-ribose) polymerase, and the externalization of phosphatidylserine after treatment of cells with IFN-γ and TNF-α. Knockdown of PAR2 with siRNA eliminated the anti-apoptotic effect of 2f-LI and increased the sensitivity of HT-29 cells to cytokine-induced apoptosis. Concurrent inhibition of both MEK1/2 and PI3K was necessary to inhibit PAR2-induced survival. 2f-LI was found to increase phosphorylation and inactivation of pro-apoptotic BAD at Ser(112) and Ser(136) by MEK1/2 and PI3K-dependent signaling, respectively. PAR2 activation also increased the expression of anti-apoptotic MCL-1. Simultaneous knockdown of both BAD and MCL-1 had minimal effects on PAR2-induced survival, whereas single knockdown had no effect. We conclude that PAR2 activation reduces cytokine-induced epithelial apoptosis via concurrent stimulation of MEK1/2 and PI3K but little involvement of MCL-1 and BAD. Our findings represent a novel mechanism whereby serine proteinases facilitate epithelial cell survival and may be important in the context of colonic healing.


Asunto(s)
Apoptosis/genética , Colon/metabolismo , Células Epiteliales/metabolismo , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/metabolismo , Receptor PAR-2/metabolismo , Apoptosis/efectos de los fármacos , Señalización del Calcio , Caspasas/genética , Caspasas/metabolismo , Línea Celular Tumoral , Colon/citología , Colon/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Regulación de la Expresión Génica , Homeostasis/efectos de los fármacos , Humanos , Interferón gamma/farmacología , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 2/antagonistas & inhibidores , MAP Quinasa Quinasa 2/genética , Oligopéptidos/farmacología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilserinas , Inhibidores de las Quinasa Fosfoinosítidos-3 , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptor PAR-2/antagonistas & inhibidores , Receptor PAR-2/genética , Tripsina/farmacología , Factor de Necrosis Tumoral alfa/farmacología
16.
Am J Pathol ; 184(9): 2516-27, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25034594

RESUMEN

Epithelial permeability is often increased in inflammatory bowel diseases. We hypothesized that perturbed mitochondrial function would cause barrier dysfunction and hence epithelial mitochondria could be targeted to treat intestinal inflammation. Mitochondrial dysfunction was induced in human colon-derived epithelial cell lines or colonic biopsy specimens using dinitrophenol, and barrier function was assessed by transepithelial flux of Escherichia coli with or without mitochondria-targeted antioxidant (MTA) cotreatment. The impact of mitochondria-targeted antioxidants on gut permeability and dextran sodium sulfate (DSS)-induced colitis in mice was tested. Mitochondrial superoxide evoked by dinitrophenol elicited significant internalization and translocation of E. coli across epithelia and control colonic biopsy specimens, which was more striking in Crohn's disease biopsy specimens; the mitochondria-targeted antioxidant, MitoTEMPO, inhibited these barrier defects. Increased gut permeability and reduced epithelial mitochondrial voltage-dependent anion channel expression were observed 3 days after DSS. These changes and the severity of DSS-colitis were reduced by MitoTEMPO treatment. In vitro DSS-stimulated IL-8 production by epithelia was reduced by MitoTEMPO. Metabolic stress evokes significant penetration of commensal bacteria across the epithelium, which is mediated by mitochondria-derived superoxide acting as a signaling, not a cytotoxic, molecule. MitoTEMPO inhibited this barrier dysfunction and suppressed colitis in DSS-colitis, likely via enhancing barrier function and inhibiting proinflammatory cytokine production. These novel findings support consideration of MTAs in the maintenance of epithelial barrier function and the management of inflammatory bowel diseases.


Asunto(s)
Colitis/patología , Mucosa Intestinal/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Antioxidantes/farmacología , Colitis/fisiopatología , Modelos Animales de Enfermedad , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/fisiopatología , Masculino , Ratones , Ratones Endogámicos BALB C , Mitocondrias/efectos de los fármacos , Permeabilidad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Cell Microbiol ; 14(4): 447-59, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22212348

RESUMEN

Both pathogenic and commensal strains of Escherichia coli colonize the human intestinal tract. Pathogenic strains differ only in the expression of virulence factors, many of which comprise a type III secretion system (TTSS). Little is known regarding the effect of E. coli on the intestinal epithelial response to the secretagogues that drive ion secretion, despite its importance in causing clinically significant diarrhoea. Using Ussing chambers to measure electrogenic ion transport of T84 intestinal epithelial cell monolayers, we found that all strains of E. coli tested (pathogenic, commensal, probiotic and lab strain) significantly reduced cAMP-dependent ion secretion after 4-8 h exposure. Enteropathogenic E. coli mutants lacking a functional TTSS caused similar hyposecretion while not causing significant apoptosis (as shown by caspase-3 cleavage) or necrosis (lactate dehydrogenase release), as did the commensal strain F18, indicating that epithelial cell death was not the cause of hyposecretion. Enteropathogenic E. coli and the TTSS mutant significantly reduced cell surface expression of the apical anion channel, cystic fibrosis transmembrane conductance regulator, which is likely the mechanism behind the pathogen-induced hyposecretion. However, F18 did not cause cystic fibrosis transmembrane conductance regulator mislocalization and the commensal-induced mechanism remains unclear.


Asunto(s)
Sistemas de Secreción Bacterianos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Escherichia coli Enteropatógena/patogenicidad , Células Epiteliales/metabolismo , Infecciones por Escherichia coli/metabolismo , Muerte Celular , Línea Celular , Membrana Celular/metabolismo , Colforsina/análogos & derivados , Colforsina/farmacología , AMP Cíclico/metabolismo , Diarrea/microbiología , Escherichia coli Enterohemorrágica/efectos de los fármacos , Escherichia coli Enterohemorrágica/patogenicidad , Escherichia coli Enteropatógena/efectos de los fármacos , Células Epiteliales/microbiología , Infecciones por Escherichia coli/microbiología , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Transporte de Proteínas , Factores de Tiempo , Factores de Virulencia/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo
18.
Infect Immun ; 80(12): 4474-84, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23045481

RESUMEN

Clostridium difficile, a major cause of hospital-acquired diarrhea, triggers disease through the release of two toxins, toxin A (TcdA) and toxin B (TcdB). These toxins disrupt the cytoskeleton of the intestinal epithelial cell, increasing intestinal permeability and triggering the release of inflammatory mediators resulting in intestinal injury and inflammation. The most prevalent animal model to study TcdA/TcdB-induced intestinal injury involves injecting toxin into the lumen of a surgically generated "ileal loop." This model is time-consuming and exhibits variability depending on the expertise of the surgeon. Furthermore, the target organ of C. difficile infection (CDI) in humans is the colon, not the ileum. In the current study, we describe a new model of CDI that involves intrarectal instillation of TcdA/TcdB into the mouse colon. The administration of TcdA/TcdB triggered colonic inflammation and neutrophil and macrophage infiltration as well as increased epithelial barrier permeability and intestinal epithelial cell death. The damage and inflammation triggered by TcdA/TcdB isolates from the VPI and 630 strains correlated with the concentration of TcdA and TcdB produced. TcdA/TcdB exposure increased the expression of a number of inflammatory mediators associated with human CDI, including interleukin-6 (IL-6), gamma interferon (IFN-γ), and IL-1ß. Finally, we were able to demonstrate that TcdA was much more potent at inducing colonic injury than was TcdB but TcdB could act synergistically with TcdA to exacerbate injury. Taken together, our data indicate that the intrarectal murine model provides a robust and efficient system to examine the effects of TcdA/TcdB on the induction of inflammation and colonic tissue damage in the context of human CDI.


Asunto(s)
Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/toxicidad , Clostridioides difficile/patogenicidad , Modelos Animales de Enfermedad , Enterocolitis Seudomembranosa/patología , Enterotoxinas/toxicidad , Inflamación/patología , Administración Rectal , Animales , Proteínas Bacterianas/administración & dosificación , Toxinas Bacterianas/administración & dosificación , Clostridioides difficile/metabolismo , Colon/patología , Relación Dosis-Respuesta a Droga , Enterocolitis Seudomembranosa/inmunología , Enterocolitis Seudomembranosa/mortalidad , Enterotoxinas/administración & dosificación , Femenino , Humanos , Inflamación/inmunología , Inflamación/mortalidad , Ratones , Ratones Endogámicos C57BL
19.
Am J Physiol Gastrointest Liver Physiol ; 303(1): G111-9, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22517768

RESUMEN

Proteinase-activated receptor (PAR)(2), a G protein-coupled receptor activated by serine proteinases, has been implicated in both intestinal inflammation and epithelial proliferation. Cyclooxygenase (COX)-2 is overexpressed in the gut during inflammation as well as in colon cancer. We hypothesized that PAR(2) drives COX-2 expression in intestinal epithelial cells. Treatment of Caco-2 colon cancer cells with the PAR(2)-activating peptide 2-furoyl-LIGRLO-NH(2) (2fLI), but not by its reverse-sequence PAR(2)-inactive peptide, for 3 h led to an increase in intracellular COX-2 protein expression accompanied by a COX-2-dependent increase in prostaglandin E(2) production. 2fLI treatment for 30 min significantly increased metalloproteinase activity in the culture supernatant. Increased epidermal growth factor receptor (EGFR) phosphorylation was observed in cell lysates following 40 min of treatment with 2fLI. The broad-spectrum metalloproteinase inhibitor marimastat inhibited both COX-2 expression and EGFR phosphorylation. The EGFR tyrosine kinase inhibitor PD153035 also abolished 2fLI-induced COX-2 expression. Although PAR(2) activation increased ERK MAPK phosphorylation, neither ERK pathway inhibitors nor a p38 MAPK inhibitor affected 2fLI-induced COX-2 expression. However, inhibition of either Src tyrosine kinase signaling by PP2, Rho kinase signaling by Y27632, or phosphatidylinositol 3 (PI3) kinase signaling by LY294002 prevented 2fLI-induced COX-2 expression. Trypsin increased COX-2 expression through PAR(2) in Caco-2 cells and in an EGFR-dependent manner in the noncancerous intestinal epithelial cell-6 cell line. In conclusion, PAR(2) activation drives COX-2 expression in Caco-2 cells via metalloproteinase-dependent EGFR transactivation and activation of Src, Rho, and PI3 kinase signaling. Our findings provide a mechanism whereby PAR(2) can participate in the progression from chronic inflammation to cancer in the intestine.


Asunto(s)
Ciclooxigenasa 2/biosíntesis , Células Epiteliales/metabolismo , Receptores ErbB/fisiología , Mucosa Intestinal/metabolismo , Receptor PAR-2/fisiología , Anfirregulina , Western Blotting , Células CACO-2 , Línea Celular , Cromatografía Líquida de Alta Presión , Ciclooxigenasa 2/genética , Dinoprostona/metabolismo , Familia de Proteínas EGF , Ensayo de Inmunoadsorción Enzimática , Receptores ErbB/genética , Glicoproteínas/análisis , Glicoproteínas/metabolismo , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intercelular/análisis , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mucosa Intestinal/citología , Metaloproteinasas de la Matriz/biosíntesis , Fosfatidilinositol 3-Quinasa/fisiología , Reacción en Cadena de la Polimerasa , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Transducción de Señal/fisiología , Activación Transcripcional/efectos de los fármacos , Tripsina/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Quinasas Asociadas a rho/fisiología , Familia-src Quinasas/fisiología
20.
Tissue Barriers ; 10(2): 1968763, 2022 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-34511032

RESUMEN

The intestinal barrier function relies on the presence of a single layer of epithelial cells. Barrier dysfunction is associated with the inflammatory bowel diseases (IBD). Understanding the mechanisms involved in intestinal wound healing in order to sustain the barrier function has a great therapeutic potential. Activation of protease-activated receptor-2 (PAR2) induces COX-2 expression in intestinal epithelial cells via EGFR transactivation. COX-2 is well known for its protective effects in the gastrointestinal tract. Therefore, we hypothesized that PAR-2 activation induces a wound healing response in intestinal epithelial cells through COX-2-derived lipid mediators and EGFR transactivation. Immunofluorescence and calcium assay were used to characterize CMT-93 mouse colonic epithelial cell line for PAR2 expression and its activity, respectively. Treatment with PAR2 activating peptide 2-furoyl-LIGRLO-NH2 (2fLI), but not by its inactive reverse-sequence peptide (2fO) enhanced wound closure in scratch wounded monolayers. The EGFR tyrosine kinase inhibitor (PD153035), broad-spectrum matrix metalloproteinase inhibitor (GM6001) and Src tyrosine kinase inhibitor (PP2) inhibited PAR2-induced wound healing. However, PAR2 activation did not induce COX-2 expression in CMT-93 cells and inhibition of COX-2 by COX-2 selective inhibitor (NS-398) did not alter PAR2-induced wound healing. In conclusion, PAR2 activation drives wound healing in CMT-93 cells via EGFR transactivation. Matrix metalloproteinases and Src tyrosine kinase activity may involve in EGFR transactivation and PAR2-induced wound healing is independent of COX-2 activity. These findings provide a mechanism whereby PAR2 can participate in the resolution of intestinal wounds in gastrointestinal inflammatory diseases.


Asunto(s)
Receptores ErbB , Receptor PAR-2 , Animales , Ciclooxigenasa 2 , Receptores ErbB/metabolismo , Ratones , Inhibidores de Proteínas Quinasas , Receptor PAR-2/metabolismo , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA