Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Anal Bioanal Chem ; 416(11): 2749-2759, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37962609

RESUMEN

The protective effect of selenium (Se) against Hg-induced neurotoxicity has been widely investigated; however, the mechanisms behind this interaction have not been fully elucidated yet. In the current work, the role of Se against MeHg+-induced cytotoxicity in the human neuroblastoma cell line (SH-SY5Y) is reported for the first time by tracking Hg uptake and accumulation at the single-cell level by inductively coupled plasma-mass spectrometry in single-cell mode (SC-ICP-MS). The influence of different Se species (SeMet, SeMeSeCys, citrate-SeNPs, and chitosan-SeNPs) on MeHg+ cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. SeMet and SeMeSeCys exhibited protective effects against MeHg+-induced cell death, particularly at high MeHg+ concentrations (LC50). In addition, chitosan-SeNPs showed greater protection compared to citrate-SeNPs when co-exposed with MeHg+. Interestingly, SC-ICP-MS unveiled the heterogeneous distribution of Hg uptake by SH-SY5Y cells. Co-exposure of SeMet and SeMeSeCys with MeHg+ led to a reduction of the amount of Hg accumulated per individual cell, which decreased the maximum level of Hg per cell by half (from 60 fg Hg cell-1 to 30 fg Hg cell-1) when SeMet was present, along with a decrease in the percentage of cells that accumulated the highest quantity of MeHg+. All these data corroborate the protective role of Se against Hg toxicity at the cellular level.


Asunto(s)
Quitosano , Mercurio , Compuestos de Metilmercurio , Neuroblastoma , Selenio , Humanos , Selenio/farmacología , Selenio/metabolismo , Compuestos de Metilmercurio/toxicidad , Compuestos de Metilmercurio/análisis , Quitosano/farmacología , Mercurio/análisis , Línea Celular , Citratos
2.
Environ Res ; 245: 118072, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157971

RESUMEN

Fish acute toxicity tests are commonly used in aquatic environmental risk assessments, being required in different international substances regulations. A general trend in the toxicity testing of nanomaterials (NMs) has been to use standardized aquatic toxicity tests. However, as these tests were primarily developed for soluble chemical, issues regarding particle dissolution, agglomeration or sedimentation during the time of exposure are not considered when reporting the toxicity of NMs. The aim of this study was to characterize the NM behaviour throughout the fish acute test and to provide criteria to assay the toxicity of nine NMs based on TiO2, ZnO, SiO2, BaSO4, bentonite, and carbon nanotubes, on rainbow trout following OECD Test Guideline (TG) nº203. Our results showed the importance of conducting a preliminary test (without fish) when working with NMs. They provide valuable information on, sample monitoring, agglomeration, sedimentation, dissolution, actual concentrations of NMs, needed to design the test. Among the NMs tested, only bentonite nanoparticles were stable during the 96-h pre-test and test in aquarium water. In contrast, the remaining NMs exhibited considerable loss and sedimentation within the first 24 h. The high sedimentation observed for almost all NMs highlights the need of consistently measuring the concentrations throughout the entire duration of the fish acute toxicity test to make reliable concentration-response relationships. Notable differences emerged in LC50 values when using actual concentrations as nominal concentrations overestimated concentrations by up to 85.6%. Among all NMs tested, only ZnO NMs were toxic to rainbow trout. A flow chart was specifically developed for OECD TG 203, aiding users in making informed decisions regarding the selection of test systems and necessary modifications to ensure accurate, reliable, and reusable toxicity data. Our findings might contribute to the harmonization of TG 203 improving result reproducibility and interpretability and supporting the development of read-across and QSAR models.


Asunto(s)
Nanoestructuras , Nanotubos de Carbono , Óxido de Zinc , Animales , Dióxido de Silicio , Nanotubos de Carbono/toxicidad , Reproducibilidad de los Resultados , Bentonita , Nanoestructuras/química , Peces
3.
Appl Microbiol Biotechnol ; 107(4): 1329-1339, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36680586

RESUMEN

The fruit-origin strain Fructobacillus tropaeoli CRL 2034 can biotransform selenium into seleno-nanoparticles and selenocysteine. The proteomic analysis of F. tropaeoli CRL 2034 exposed to 5 and 100 ppm of Se showed a dose-dependent response since 19 and 77 proteins were deregulated, respectively. In the presence of 5 ppm of Se, the deregulated proteins mainly belonged to the categories of energy production and conversion or had unknown functions, while when cells were grown with 100 ppm of Se, most of the proteins were grouped into amino acid transport and metabolism, nucleotide transport and metabolism, or into unknown functions. However, under both Se conditions, glutathione reductases were overexpressed (1.8-3.1-fold), while mannitol 2-dehydrogenase was downregulated (0.54-0.19-fold), both enzymes related to oxidative stress functions. Mannitol 2-dehydrogenase was the only enzyme found that contained SeCys, and its activity was 1.27-fold increased after 5 ppm of Se exposure. Our results suggest that F. tropaeoli CRL 2034 counteracts Se stress by overexpressing proteins related to oxidative stress resistance and changing the membrane hydrophobicity, which may improve its survival under (food) storage and positively influence its adhesion to intestinal cells. Selenized cells of F. tropaeoli CRL 2034 could be used for producing Se-enriched fermented foods. KEY POINTS: • Selenized cells of F. tropaeoli showed enhanced resistance to oxidative stress. • SeCys was found in the Fructobacillus mannitol 2-dehydrogenase polypeptide chain. • F. tropaeoli mannitol 2-dehydrogenase activity was highest when exposed to selenium.


Asunto(s)
Selenio , Selenio/química , Frutas/metabolismo , Manitol Deshidrogenasas/metabolismo , Proteómica , Estrés Oxidativo
4.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37176018

RESUMEN

With the goal of combating the multi-faceted Alzheimer's disease (AD), a series of Rivastigmine-Benzimidazole (RIV-BIM) hybrids was recently reported by us as multitarget-directed ligands, thanks to their capacity to tackle important hallmarks of AD. In particular, they exhibited antioxidant activity, acted as cholinesterase inhibitors, and inhibited amyloid-ß (Aß) aggregation. Herein, we moved forward in this project, studying their ability to chelate redox-active biometal ions, Cu(II) and Fe(III), with widely recognized roles in the generation of oxidative reactive species and in protein misfolding and aggregation in both AD and Parkinson's disease (PD). Although Cu(II) chelation showed higher efficiency for the positional isomers of series 5 than those of series 4 of the hybrids, the Aß-aggregation inhibition appears more dependent on their capacity for fibril intercalation than on copper chelation. Since monoamine oxidases (MAOs) are also important targets for the treatment of AD and PD, the capacity of these hybrids to inhibit MAO-A and MAO-B was evaluated, and they showed higher activity and selectivity for MAO-A. The rationalization of the experimental evaluations (metal chelation and MAO inhibition) was supported by computational molecular modeling studies. Finally, some compounds showed also neuroprotective effects in human neuroblastoma (SH-SY5Y cells) upon treatment with 1-methyl-4-phenylpyridinium (MPP+), a neurotoxic metabolite of a Parkinsonian-inducing agent.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Enfermedades Neurodegenerativas , Humanos , Rivastigmina/farmacología , Compuestos Férricos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Monoaminooxidasa/metabolismo , Quelantes/farmacología , Bencimidazoles
5.
Molecules ; 28(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36838611

RESUMEN

Obtaining polyphenols from horticultural waste is an emerging trend that enables the valorization of resources and the recovery of value-added compounds. However, a pivotal point in the exploitation of these natural extracts is the assessment of their chemical stability. Hence, this study evaluates the effect of temperature storage (20 and -20 °C) and drying methods on the phenolic composition and antioxidant activity of clementine and lemon peel extracts, applying HPLC-DAD-MS, spectrophotometric methods, and chemometric tools. Vacuum-drying treatment at 60 °C proved to be rather suitable for retaining the highest antioxidant activity and the hesperidin, ferulic, and coumaric contents in clementine peel extracts. Lemon extracts showed an increase in phenolic acids after oven-drying at 40 °C, while hesperidin and rutin were sustained better at 60 °C. Hydroethanolic extracts stored for 90 days preserved antioxidant activity and showed an increase in the total phenolic and flavonoid contents in lemon peels, unlike in clementine peels. Additionally, more than 50% of the initial concentration was maintained up to 51 days, highlighting a half-life time of 71 days for hesperidin in lemon peels. Temperature was not significant in the preservation of the polyphenols evaluated, except for in rutin and gallic acid, thus, the extracts could be kept at 20 °C.


Asunto(s)
Citrus , Hesperidina , Antioxidantes/química , Extractos Vegetales/química , Fenoles , Polifenoles , Citrus/química , Rutina
6.
Anal Bioanal Chem ; 414(8): 2739-2755, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35112149

RESUMEN

In this study, an integrated characterisation through polyphenol and caffeine content and antioxidant activity was combined with chemometric analysis to assess the effects of simulated in vitro gastrointestinal digestion on the bioaccessibility of these bioactive compounds from nine different tea infusions. Tea infusions were characterised based on total flavonoids, total polyphenols and antioxidant activity, together with the determination of individual polyphenol content. Fourteen phenolic compounds, including phenolic acids, stilbenes and flavonoids, were selected based on their reported bioactivity and high accessibility, attributed to their low molecular weight. Both polyphenols and caffeine were initially monitored in raw tea infusions and through the different digestion stages (salivary, gastric and duodenal) by capillary high performance liquid chromatography coupled to diode array detection (cHPLC-DAD) and/or HPLC coupled to a triple quadrupole mass analyser (HPLC-MS/MS). Multivariate analysis of the studied bioactives, using principal component analysis and cluster analysis, revealed that the decaffeination process seems to increase the stability and concentration of the compounds evaluated during digestion. The greatest transformations occurred mainly in the gastric and duodenal stages, where low bioactivity indices (IVBA) were shown for resveratrol and caffeic acid (IVBA = 0%). In contrast, the polyphenols gallic acid, chlorogenic acid and quercetin gave rise to their availability in white, green and oolong infusion teas (IVBA > 90%). Furthermore, highly fermented black and pu-erh varieties could be designated as less bioaccessible environments in the duodenum with respect to the tested compounds.


Asunto(s)
Polifenoles , Espectrometría de Masas en Tándem , Antioxidantes/análisis , Quimiometría , Cromatografía Líquida de Alta Presión , Digestión , Polifenoles/análisis
7.
Anal Bioanal Chem ; 414(26): 7573-7584, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35982253

RESUMEN

Alzheimer's disease (AD), the most prevalent neurodegenerative disease, is characterized by extracellular accumulation of amyloid-beta protein (Aß), which is believed to be the very starting event of AD neurodegeneration. In this work, D-Phe, D-Ala, and D-Glu amino acids, which are the non-occurring enantiomeric form in the human body, and also D-Asp and DL-SeMet, have proved to be amyloidogenic regarding Aß42 aggregation in TEM studies. These amyloidogenic amino acid enantiomers also widened Aß42 fibrils up to 437% regarding Aß42 alone, suggesting that Aß42 aggregation is enantiomerically dependent. To inhibit enantiomeric-induced amyloid aggregation, selenium nanoparticles stabilized with chitosan (Ch-SeNPs) were successfully synthesized and employed. Thus, Ch-SeNPs reduced and even completely inhibited Aß42 aggregation produced in the presence of some amino acid enantiomers. In addition, through UV-Vis spectroscopy and fluorescence studies, it was deduced that Ch-SeNPs were able to interact differently with amino acids depending on their enantiomeric form. On the other hand, antioxidant properties of amino acid enantiomers were evaluated by DPPH and TBARS assays, with Tyr enantiomers being the only ones showing antioxidant effect. All spectroscopic data were statistically analysed through experimental design and response surface analysis, showing that the interaction between the Ch-SeNPs and the amino acids studied was enantioselective and allowing, in some cases, to establish the concentration ratios in which this interaction is maximum.


Asunto(s)
Enfermedad de Alzheimer , Quitosano , Nanopartículas , Enfermedades Neurodegenerativas , Selenio , Humanos , Selenio/farmacología , Selenio/química , Enfermedad de Alzheimer/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/química , Quitosano/química , Estereoisomerismo , Aminoácidos , Sustancias Reactivas al Ácido Tiobarbitúrico , Péptidos beta-Amiloides/química , Nanopartículas/química , Fragmentos de Péptidos/metabolismo
8.
Anal Bioanal Chem ; 412(24): 6485-6497, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32322953

RESUMEN

Extracellular accumulation of amyloid beta peptide (Aß) is believed to be one of the main factors responsible for neurodegeneration in Alzheimer's disease (AD). Metals could induce Aß aggregation, by their redox activity or binding properties to amyloid ß fibrils, leading to their accumulation and deposition outside neurons. For this reason, metal chelation may have an acknowledged part to play in AD prevention and treatment. In the current work, the role of different selenium species, including selenium nanoparticles, in Aß aggregation, was studied by evaluating their metal-chelating properties and their ability both to inhibit metal-induced Aß1-42 aggregation fibrils and to disaggregate them once formed. Transition biometals such as Fe(II), Cu(II), and Zn(II) at 50 µM were selected to establish the in vitro models. The DPPH assay was used to determine the antioxidant capacity of the evaluated selenium species. Selenium nanoparticles stabilized with chitosan (Ch-SeNPs) and with both chitosan and chlorogenic acid polyphenol (CGA@ChSeNPs) showed the highest antioxidant properties with EC50 of 0.9 and 0.07 mM, respectively. UV-Vis and d1(UV-Vis) spectra also revealed that selenium species, in particular selenomethionine (SeMet), were able to interact with metals. Regarding Aß1-42 incubation experiments, Fe(II), Cu(II), and Zn(II) induced Aß aggregation, in a similar way to most of the evaluated selenium species. However, Ch-SeNPs produced a high inhibition of metal-induced Aß aggregation, as well as a high disaggregation capacity of Aß fibrils in both the presence and absence of biometals, in addition to reducing the length and width (20% of reduction in the presence of Zn(II)) of the generated Aß fibrils. Graphical abstract.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Antioxidantes/farmacología , Metales/efectos adversos , Agregado de Proteínas/efectos de los fármacos , Selenio/farmacología , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/metabolismo , Antioxidantes/química , Cobre/efectos adversos , Humanos , Hierro/efectos adversos , Nanopartículas/química , Agregación Patológica de Proteínas/inducido químicamente , Agregación Patológica de Proteínas/tratamiento farmacológico , Agregación Patológica de Proteínas/metabolismo , Selenio/química , Zinc/efectos adversos
9.
Int J Mol Sci ; 18(8)2017 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-28783048

RESUMEN

The behavior and transformation of selenium nanoparticles (SeNPs) in living systems such as microorganisms is largely unknown. To address this knowledge gap, we examined the effect of three types of SeNP suspensions toward Lactobacillus delbrueckii subsp. bulgaricus LB-12 using a variety of techniques. SeNPs were synthesized using three types of coating agents (chitosan (CS-SeNPs), hydroxyethyl cellulose (HEC-SeNPs) and a non-ionic surfactant, surfynol (ethoxylated-SeNPs)). Morphologies of SeNPs were all spherical. Transmission electron microscopy (TEM) was used to locate SeNPs in the bacteria. High performance liquid chromatography (HPLC) on line coupled to inductively coupled plasma mass spectrometry (ICP-MS) was applied to evaluate SeNP transformation by bacteria. Finally, flow cytometry employing the live/dead test and optical density measurements at 600 nm (OD600) were used for evaluating the percentages of bacteria viability when supplementing with SeNPs. Negligible damage was detected by flow cytometry when bacteria were exposed to HEC-SeNPs or CS-SeNPs at a level of 10 µg Se mL-1. In contrast, ethoxylated-SeNPs were found to be the most harmful nanoparticles toward bacteria. CS-SeNPs passed through the membrane without causing damage. Once inside, SeNPs were metabolically transformed to organic selenium compounds. Results evidenced the importance of capping agents when establishing the true behavior of NPs.


Asunto(s)
Materiales Biocompatibles Revestidos/farmacología , Lactobacillales/metabolismo , Nanopartículas del Metal/química , Selenio/farmacología , Cromatografía Líquida de Alta Presión , Lactobacillales/efectos de los fármacos , Lactobacillales/crecimiento & desarrollo , Lactobacillales/ultraestructura , Nanopartículas del Metal/ultraestructura , Viabilidad Microbiana/efectos de los fármacos , Espectrometría por Rayos X
10.
Anal Bioanal Chem ; 408(24): 6659-70, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27497969

RESUMEN

Selenium nanoparticles (SeNPs) were incorporated in a flexible multilayer plastic material using a water-base adhesive as vehicle for SeNPs. The antioxidant performance of the original solutions containing spherical SeNPs of 50-60 nm diameter, the adhesive containing these SeNPs, and the final multilayer plastic material to be used as food packaging were quantitatively measured. The radical scavenging capacity due to SeNPs was quantified by a free radical assay developed in the laboratory and by the diphenyl-1-picrylhydrazyl (DPPH) method. DPPH was not efficient to measure the scavenging capacity in the multilayer when the free radical scavenger is not in the surface in contact with it. Several multilayer laminated structures composed by [PET (20 m)-adhesive-LDPE (with variable thickness from 35 to 90 µm)] were prepared and measured, demonstrating for the first time that free radicals derived from oxygen (OH·, O2·, and O2H) cross the PE layer and arrive at the adhesive. SeNPs remain as such after manufacture and the final laminate is stable after 3 months of storage. The antioxidant multilayer is a non-migrating efficient free radical scavenger, able to protect the packaged product versus oxidation and extending the shelf life without being in direct contact with the product. Migration tests of both Se and SeNPs to simulants and hazelnuts demonstrated the non-migrating performance of this new active packaging. Graphical abstract ᅟ.


Asunto(s)
Embalaje de Alimentos/métodos , Depuradores de Radicales Libres/química , Nanopartículas/química , Selenio/química , Adhesivos/química , Compuestos de Bifenilo/química , Calidad de los Alimentos , Radicales Libres/química , Oxidación-Reducción , Picratos/química
11.
J Dairy Sci ; 99(12): 9405-9414, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27771091

RESUMEN

Zinc bioaccessibility from infant formula was estimated by in vitro methods (solubility and dialyzability) and size-exclusion chromatography (SEC) coupled to inductively coupled plasma-mass spectrometry (ICP-MS). Infant formula samples were first characterized in terms of Zn bound to lipids and proteins and Zn distribution in the aqueous soluble protein fraction. We found that Zn is not incorporated into the lipid fraction of the samples, being mainly associated with the protein fraction (around 100%). Fractionation of Zn-containing proteins in the soluble protein fraction was achieved by SEC-ICP-MS after performing protein extraction with a solution of 100mM (pH 6.8) Tris-HCl. The percentages of zinc in the soluble protein fraction in the soy-based and lactose-free infant formula were very low, around 7 and 24%, respectively, whereas the content of Zn in the soluble protein fraction of milk-based formula was around 90%. By SEC-ICP-MS, we found that Zn is associated with low-molecular weight compounds (around 10kDa) in all the infant formulas tested. The percentages of Zn estimated in the in vitro gastrointestinal digests of the infant formula ranged from 30 to 70% and from 1 to 10% for solubility and dialyzability assays, respectively. The dialyzability test resulted in lower than expected scores, as SEC-ICP-MS analysis of the gastrointestinal extracts revealed that Zn is bound to biomolecules with a molecular weight ranging from 1 to 7kDa, which suggests that dialysis data should be interpreted with caution. Speciation studies are a valuable tool for establishing availability of nutrients and for validating data from dialyzable in vitro methods.


Asunto(s)
Fórmulas Infantiles/química , Zinc/farmacocinética , Animales , Cromatografía en Gel , Espectrometría de Masas , Diálisis Renal , Solubilidad
12.
J Food Sci Technol ; 52(7): 4236-45, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26139888

RESUMEN

Agronomic biofortification of staple crops is an effective way to enhance their contents in essential nutrients up the food chain, with a view to correcting for their deficiencies in animal or human status. Selenium (Se) is one such case, for its uneven distribution in the continental crust and, therefore, in agricultural lands easily translates into substantial variation in nutritional intakes. Cereals are far from being the main sources of Se on a content basis, but they are likely the major contributors to intake on a dietary basis. To assess their potential to assimilate and biotransform Se, bread and durum wheat were enriched with Se through foliar and soil addition at an equivalent field rate of 100 g of Se per hectare (ha), using sodium selenate and sodium selenite as Se-supplementation matrices, in actual field conditions throughout. Biotransformation of inorganic Se was evaluated by using HPLC-ICP-MS after enzymatic hydrolysis for Se-species extraction in the resulting mature wheat grains. Selenomethionine and Se(VI) were identified and quantified: the former was the predominant species, representing 70-100 % of the total Se in samples; the maximum amount of inorganic Se was below 5 %. These results were similar for both supplementation methods and for both wheat varieties. Judging from the present results, one can conclude that agronomic biofortification of wheat may improve the nutritional quality of wheat grains with significant amounts of selenomethionine, which is an attractive option for increasing the Se status in human diets through Se-enriched, wheat-based foodstuff.

13.
Anal Bioanal Chem ; 406(30): 7949-58, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25311192

RESUMEN

The use of enriched Se isotopes as tracers has provided important information on Se metabolism. However, selenium isotopes are expensive and difficult to obtain. A simple and cheap strategy based on the production of [(77)Se]-methylselenocysteine ([(77)Se]-MeSeCys) when preparing sauerkraut in the presence of [(77)Se]-selenite was developed. The resulting [(77)Se]-MeSeCys was used for evaluating the metabolic transformation of MeSeCys in Wistar rats, by feeding them with an AIN-93 M diet containing 20 % sauerkraut enriched in [(77)Se]-MeSeCys. Organs (liver, kidney, brain, testicles, and heart) were obtained after seven days of treatment and subjected to total selenium and selenium-speciation analysis by high-performance liquid chromatography coupled with isotope-dilution-analysis inductively-coupled-plasma mass spectrometry (HPLC-IDA-ICP-MS). Analysis of (77)Se-labeled organs revealed a prominent increase (more than 100 % Se-level enhancement) of selenium in the kidney and heart, whereas in the liver selenium concentration only increased by up to 20 % and it remained constant in the brain and testicles. (77)Se-enriched-sauerkraut supplementation does not alter the concentration of other essential elements in comparison to controls except for in the heart and kidney, in which selenium was positively correlated with Mg, Zn, Cu, and Mo. HPLC-ICP-MS analysis of hydrolyzed extracts after carbamidomethylation of the (77)Se-labeled organs revealed the presence of [(77)Se]-SeCys and an unknown Se-containing peak, the identity of which could not be verified by electrospray-ionization (ESI)-MS-MS. Low amounts of [(77)Se]-MeSeCys were found in (77)Se-labeled liver and kidney extracts, suggesting the incorporation of this selenium species in its intact form.


Asunto(s)
Ácido Selenioso/química , Selenio/análisis , Selenio/metabolismo , Selenocisteína/análogos & derivados , Alimentación Animal , Animales , Cromatografía Líquida de Alta Presión , Riñón/metabolismo , Hígado/metabolismo , Masculino , Espectrometría de Masas , Miocardio/metabolismo , Ratas , Ratas Wistar , Selenocisteína/análisis , Selenocisteína/síntesis química , Selenocisteína/metabolismo
14.
Anal Chim Acta ; 1323: 343058, 2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39182969

RESUMEN

BACKGROUND: The determination of (nano)particulate content from food additives has been a long-standing concern for authorities since it is of vital importance for ensuring food safety, regulatory adherence, and transparent consumer information. Nonetheless, a critical step in these determinations is the refinement of a careful and quantitative extraction process for particles that may be found within complex matrices such as confectionery products. The development of new technologies and analysis methods for nanoparticles is ongoing. Whereas new technologies and analysis methods for nanoparticles are being developed, the extraction of (nano)particles of different nature has not been adequately addressed in the literature. RESULTS: A simple aqueous extraction procedure was found to be suitable for the simultaneous extraction of TiO2 and SiO2 (nano)particles from five confectionery products. Neither the extraction agents (water, lipase, pancreatin and Tris-HCl solutions) nor the methods (manual shaking, ultrasonic bath, ultrasonic probe and ultrafiltration) altered the size, morphology, or aggregation state of either type of particle, as revealed by the micrographs obtained by Transmission Electron Microscopy (TEM). Single-particle ICP-MS (spICP-MS) determined that the optimal conditions for extracting both types of particles involve manual shaking using water as the solvent. Furthermore, the use of enzymes seemed to hinder the determination of both types of particles by spICP-MS. (Nano)particles of TiO2 and SiO2 were detected in all the confectionaries, even though the E171 additive was only labeled in one of them. The average percentage of nanoparticulate TiO2 material in the evaluated products was 30 %, while no nanometer-sized particles of SiO2 were detected. SIGNIFICANCE: Ensuring food safety, regulatory compliance and transparent consumer information relies on getting reliable results that connect with the application of sample treatment procedures for detecting unaltered nanoparticles in food products. The presented research introduces an economical, swift, user-friendly, environmentally responsible, and harmonious extraction method for the concurrent analysis of TiO2 and SiO2 particles in confectionery samples. Furthermore, particles from additives not included in the labeling have been detected, characterized, and quantified in the confectionary products.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Titanio , Titanio/química , Dióxido de Silicio/química , Nanopartículas/química , Agua/química , Tamaño de la Partícula
15.
Food Res Int ; 192: 114851, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147531

RESUMEN

Processing conditions applied during food production could affect food component contents and bioaccessibility. Here, possible changes in Hg and Se total and species contents and bioaccessibility have been tracked in each stage of the production chain of processed fish-derived products. Therefore, Se:Hg molar ratio and Selenium Health Benefit Value (HBVSe) were calculated for final products and raw materials, resulting favorable in all cases, suggesting the safety of surimi-based products regarding mercury. Speciation studies revealed the presence of SeMeSeCys and SeMet in all samples. Thus, the integrity of the selenium species seems to be maintained. Moreover, in vitro gastrointestinal digestion model evidenced that Se bioaccessibility ranged between 20-39 % for all samples, while in case of Hg was between 8-37 %. Additionaly, SeMeSeCys and SeMet were also identified in the gastrointestinal extracts. Finally, no cytotoxicity was observed after exposure of Caco-2 cells to the gastrointestinal extracts.


Asunto(s)
Productos Pesqueros , Mercurio , Selenio , Células CACO-2 , Humanos , Selenio/análisis , Selenio/toxicidad , Productos Pesqueros/análisis , Mercurio/análisis , Mercurio/toxicidad , Mercurio/metabolismo , Animales , Peces , Disponibilidad Biológica , Contaminación de Alimentos , Manipulación de Alimentos/métodos , Digestión
16.
Antioxidants (Basel) ; 12(9)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37760045

RESUMEN

The fortification of foods with bioactive polyphenols aims to improve their functional properties and to provide health benefits. Yet, to exert their benefits, phenolic compounds must be released from the food matrix and absorbed by the small intestine after digestion, so assessing their bioaccessibility is crucial to determine their potential role. This work aims to incorporate Citrus reticulata Blanco peel extracts into wheat bread as a promising opportunity to increase their bioactive potential, along with supporting the sustainable management of citrus-industry waste. A control and a wheat bread enriched at 2% and 4% (w/v) with a phenolic extract from mandarin peels were prepared and analyzed for antioxidant activity and phenolic composition using LC-MS and UV-Vis spectrophotometry. In addition, in vitro digestion was performed, and the digested extracts were analyzed with HPLC-MS/MS. The results showed a significant increase in total flavonoid content (TFC, 2.2 ± 0.1 mg·g-1), antioxidant activity (IC50 = 37 ± 4 mg·g-1), and contents of quercetin, caffeic acid, and hesperidin in the 4% (w/v) enriched bread. Yet, most polyphenols were completely degraded after the in vitro digestion process, barring hesperidin (159 ± 36 µg·g-1), highlighting the contribution of citrus enrichment in the development of an enriched bread with antioxidant potential.

17.
Anal Chim Acta ; 1249: 340949, 2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-36868776

RESUMEN

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, representing 80% of the total dementia cases. The "amyloid cascade hypothesis" stablishes that the aggregation of the beta-amyloid protein (Aß42) is the first event that subsequently triggers AD development. Selenium nanoparticles stabilized with chitosan (Ch-SeNPs) have demonstrated excellent anti-amyloidogenic properties in previous works, leading to an improvement of AD aetiology. Here, the in vitro effect of selenium species in AD model cell line has been study to obtain a better assessment of their effects in AD treatment. For this purpose, mouse neuroblastoma (Neuro-2a) and human neuroblastoma (SH-SY5Y) cell lines were used. Cytotoxicity of selenium species, such as selenomethionine (SeMet), Se-methylselenocysteine (MeSeCys) and Ch-SeNPs, has been determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry methods. Intracellular localisation of Ch-SeNPs, and their pathway through SH-SY5Y cell line, have been evaluated by transmission electron microscopy (TEM). The uptake and accumulation of selenium species by both neuroblastoma cell lines have been quantified at single cell level by single cell- Inductively Coupled Plasma with Mass Spectrometry detection (SC-ICP-MS), with a previous optimisation of transport efficiency using gold nanoparticles (AuNPs) ((69 ± 3) %) and 2.5 mm calibration beads ((92 ± 8) %). Results showed that Ch-SeNPs would be more readily accumulated by both cell lines than organic species being accumulation ranges between 1.2 and 89.5 fg Se cell-1 for Neuro-2a and 3.1-129.8 fg Se cell-1 for SH-SY5Y exposed to 250 µM Ch-SeNPs. Data obtained were statistically treated using chemometric tools. These results provide an important insight into the interaction of Ch-SeNPs with neuronal cells, which could support their potential use in AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Nanopartículas del Metal , Neuroblastoma , Enfermedades Neurodegenerativas , Selenio , Animales , Ratones , Humanos , Oro , Microscopía Electrónica de Transmisión
18.
Analyst ; 137(22): 5302-11, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23014190

RESUMEN

Mercury toxicity and its implications in development are a major concern, due to the major threat to ecosystems and human health that this compound represents. Although some of the effects of methylmercury (MeHg) exposure have been extensively studied, the molecular mechanisms of interaction between this compound and developing organisms are still not completely understood. To provide further insights into these mechanisms, we carried out a quantitative proteomic study (iTRAQ) using zebrafish larvae exposed to 5 µg L(-1) and 25 µg L(-1) MeHg as a model. In this study, a multidimensional approach combining isoelectric focusing (IEF) and strong cation exchange (SCX) followed by reversed phase liquid chromatography prior to MALDI TOF/TOF analysis was employed, which resulted in a substantial increase in proteome coverage. Among the proteins identified, 71 were found de-regulated by more than 1.5-fold, and implicated in embryonic development, protein synthesis, calcium homeostasis and energy production. Furthermore, morphological and histological analysis of exposed larvae was carried out, reflecting changes such as smaller swim bladder, remaining yolk, bent body axis and accumulation of blood in the heart, among others.


Asunto(s)
Cromatografía Líquida de Alta Presión , Desarrollo Embrionario/efectos de los fármacos , Compuestos de Metilmercurio/toxicidad , Proteoma/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Calcio/metabolismo , Cromatografía por Intercambio Iónico , Cromatografía de Fase Inversa , Metabolismo Energético , Focalización Isoeléctrica , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Compuestos de Metilmercurio/química , Péptidos/análisis , Pez Cebra/crecimiento & desarrollo
19.
Anal Bioanal Chem ; 404(2): 315-24, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22535442

RESUMEN

Understanding the molecular mechanisms underlying MeHg toxicity and the way in which this molecule interacts with living organisms is a critical point since MeHg represents a well-known risk to ecosystems and human health. We used a quantitative proteomic approach based on stable isotopic labeling by amino acids in cell culture in combination with SDS-PAGE and nanoflow LC-ESI-LTQ for analyzing the differential protein expression of hepatic cells associated to MeHg exposure. Seventy-eight proteins were found de-regulated by more than 1.5-fold. We identified a number of proteins involved in different essential biological processes including apoptosis, mitochondrial dysfunction, cellular trafficking and energy production. Among these proteins, we found several molecules whose de-regulation has been already related to MeHg exposure, thus confirming the usefulness of our discovery approach, and new ones that helped to gain a deeper insight into the biomolecular mechanisms related to MeHg-induced toxicity. Overexpression of several HSPs and the proteasome 26S subunit itself showed the proteasome system as a molecular target of toxic MeHg. As for the interaction networks, the top ranked was the nucleic acid metabolism, where many of the identified de-regulated proteins are involved.


Asunto(s)
Hígado/efectos de los fármacos , Compuestos de Metilmercurio/toxicidad , Proteínas/metabolismo , Apoptosis , Línea Celular Tumoral , Transporte de Electrón , Electroforesis en Gel de Poliacrilamida , Humanos , Hígado/citología , Hígado/metabolismo , Espectrometría de Masa por Ionización de Electrospray
20.
Talanta ; 238(Pt 1): 123033, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34857351

RESUMEN

This study develops for the first time an analytical method for the characterization of silver and gold nanoparticles in sewage sludge. The evaluation of the effect of temperature, extracting agent and centrifugation speed and time on the extraction yield was carried out through a multifactorial analysis of variance which allows us to select 289 g, 5 min and 20 mM sodium pyrophosphate tetrabasic as optimal extraction conditions. Under these conditions, the analysis of the extract by single particle inductively coupled plasma-mass spectrometry provided recovery percentages of 70 ± 2% and 56 ± 1% for silver and gold nanoparticles, respectively. Moreover, the complementary results obtained upon analysis of these extracts by transmission electron microscopy and single particle inductively coupled plasma-mass spectrometry showed that the developed method did not modify the original size and shape of these nanoparticles during the extraction procedure. Size detection limits of 23 nm and 16 nm as well as number concentration limits of 3.12 × 109 particles kg-1 and 1.38 × 109 particles kg-1 were obtained for silver and gold nanoparticles, respectively. Moreover, a stability study of silver and gold nanoparticles in sewage sludge for 12 months showed differences between the two nanoparticle types. Although the sizes were not affected during the 12 months, silver nanoparticles underwent an oxidation process from 6 months onwards, which was reflected in an increase in the percentage of ionic silver from 14 ± 1% at 6 months to 24 ± 2% at 12 months. The developed methodology represents a simple, reliable and fast tool for detecting, quantifying and assessing the stability of nanoparticles in an important environmental sample such as sewage sludge.


Asunto(s)
Nanopartículas del Metal , Plata , Oro , Espectrometría de Masas , Tamaño de la Partícula , Aguas del Alcantarillado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA