Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Acoust Soc Am ; 154(4): 1982-1995, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37782119

RESUMEN

Harbour porpoises are visually inconspicuous but highly soniferous echolocating marine predators that are regularly studied using passive acoustic monitoring (PAM). PAM can provide quality data on animal abundance, human impact, habitat use, and behaviour. The probability of detecting porpoise clicks within a given area (P̂) is a key metric when interpreting PAM data. Estimates of P̂ can be used to determine the number of clicks per porpoise encounter that may have been missed on a PAM device, which, in turn, allows for the calculation of abundance and ideally non-biased comparison of acoustic data between habitats and time periods. However, P̂ is influenced by several factors, including the behaviour of the vocalising animal. Here, the common implicit assumption that changes in animal behaviour have a negligible effect on P̂ between different monitoring stations or across time is tested. Using a simulation-based approach informed by acoustic biologging data from 22 tagged harbour porpoises, it is demonstrated that porpoise behavioural states can have significant (up to 3× difference) effects on P̂. Consequently, the behavioural state of the animals must be considered in analysis of animal abundance to avoid substantial over- or underestimation of the true abundance, habitat use, or effects of human disturbance.


Asunto(s)
Ecolocación , Phocoena , Marsopas , Animales , Humanos , Ecosistema , Acústica
2.
J Exp Biol ; 225(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35262171

RESUMEN

Echolocating bats listen for weak echoes to navigate and hunt, which makes them prone to masking from background noise and jamming from other bats and prey. As for electrical fish that display clear spectral jamming avoidance responses (JAR), bats have been reported to mitigate the effects of jamming by shifting the spectral contents of their calls, thereby reducing acoustic interference to improve echo-to-noise ratio (ENR). Here, we tested the hypothesis that frequency-modulating bats (FM bats) employ a spectral JAR in response to six masking noise bands ranging from 15 to 90 kHz, by measuring the -3 dB endpoints and peak frequency of echolocation calls from five male Daubenton's bats (Myotis daubentonii) during a landing task. The bats were trained to land on a noise-generating spherical transducer surrounded by a star-shaped microphone array, allowing for acoustic localization and source parameter quantification of on-axis calls. We show that the bats did not employ spectral JAR as the peak frequency during jamming remained unaltered compared with that of silent controls (all P>0.05, 60.73±0.96 kHz, mean±s.e.m.), and -3 dB endpoints decreased in noise irrespective of treatment type. Instead, Daubenton's bats responded to acoustic jamming by increasing call amplitude via a Lombard response that was bandwidth dependent, ranging from a mean of 0.05 dB/dB (95% confidence interval 0.04-0.06 dB/dB) noise for the most narrowband noise (15-30 kHz) to 0.17 dB/dB (0.16-0.18 dB/dB) noise for the most broadband noise (30-90 kHz). We conclude that Daubenton's bats, despite having the vocal flexibility to do so, do not employ a spectral JAR, but defend ENRs via a bandwidth-dependent Lombard response.


Asunto(s)
Quirópteros , Ecolocación , Acústica , Animales , Quirópteros/fisiología , Ecolocación/fisiología , Alimentos , Masculino , Ruido
3.
J Exp Biol ; 225(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35037031

RESUMEN

Echolocating bats hunt prey on the wing under conditions of poor lighting by emission of loud calls and subsequent auditory processing of weak returning echoes. To do so, they need adequate echo-to-noise ratios (ENRs) to detect and distinguish target echoes from masking noise. Early obstacle avoidance experiments report high resilience to masking in free-flying bats, but whether this is due to spectral or spatiotemporal release from masking, advanced auditory signal detection or an increase in call amplitude (Lombard effect) remains unresolved. We hypothesized that bats with no spectral, spatial or temporal release from masking noise defend a certain ENR via a Lombard effect. We trained four bats (Myotis daubentonii) to approach and land on a target that broadcasted broadband noise at four different levels. An array of seven microphones enabled acoustic localization of the bats and source level estimation of their approach calls. Call duration and peak frequency did not change, but average call source levels (SLRMS, at 0.1 m as dB re. 20 µPa) increased, from 112 dB in the no-noise treatment, to 118 dB (maximum 129 dB) at the maximum noise level of 94 dB re. 20 µPa root mean square. The magnitude of the Lombard effect was small (0.13 dB SLRMS dB-1 of noise), resulting in mean broadband and narrowband ENRs of -11 and 8 dB, respectively, at the highest noise level. Despite these poor ENRs, the bats still performed echo-guided landings, making us conclude that they are very resilient to masking even when they cannot avoid it spectrally, spatially or temporally.


Asunto(s)
Quirópteros , Ecolocación , Animales , Ruido , Ultrasonido , Vocalización Animal
4.
J Acoust Soc Am ; 149(1): 581, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33514151

RESUMEN

Echolocating mammals produce directional sound beams with high source levels to improve echo-to-noise ratios and reduce clutter. Recent studies have suggested that the differential spectral gradients of such narrow beams are exploited to facilitate target localization by pointing the beam slightly off targets to maximize the precision of angular position estimates [maximizing bearing Fisher information (FI)]. Here, we test the hypothesis that echolocating toothed whales focus their acoustic gaze askew during target detection to maximize spectral cues by investigating the acoustic gaze direction of two trained delphinids (Tursiops truncatus and Pseudorca crassidens) echolocating to detect an aluminum cylinder behind a hydrophone array in a go/no-go paradigm. The animals rarely placed their beam axis directly on the target, nor within the narrow range around the off-axis angle that maximizes FI. However, the target was, for each trial, ensonified within the swath of the half-power beam width, and hence we conclude that the animals solved the detection task using a strategy that seeks to render high echo-to-noise ratios rather than maximizing bearing FI. We posit that biosonar beam adjustment and acoustic gaze strategies are likely task-dependent and that maximizing bearing FI by pointing off-axis does not improve target detection performance.


Asunto(s)
Delfín Mular , Ecolocación , Ballenas , Acústica , Animales , Sonido
5.
J Acoust Soc Am ; 150(4): 2879, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34717496

RESUMEN

Male humpback whales (Megaptera novaeangliae) sing in mating aggregations in the form of song displays, but much less is known about how both sexes use sound on their feeding grounds. Here, we test different hypotheses about the function of vocalizations in 14 foraging humpback whales tagged with sound and movement recording Dtags in Greenland. We show that this population of foraging humpback whales have an overall low call rate of 11.9 calls h-1 (inter-quartile range = 12.1) with no support for the hypotheses that they employ sound in the localization or manipulation of prey nor in the coordination of lunge feeding. The calls had a mean received level of 135 ± 5dB re 1 µPa, which is some 30 dB lower than maximum levels of song recorded on similar deployed tags, suggesting a much smaller active space of these vocalizations. This reduced active space might, in concert with low call rates, serve to mitigate eavesdropping by predatory killer whales or conspecifics competing for the same prey resources. We conclude that feeding humpback whales in Greenland produce low level, infrequent calls suggesting that calling is not a prerequisite for successful feeding, but likely serves to mediate within group social interactions.


Asunto(s)
Yubarta , Canto , Animales , Conducta Alimentaria , Femenino , Groenlandia , Masculino , Conducta Predatoria , Reproducción , Vocalización Animal
6.
J Exp Biol ; 223(Pt 2)2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31836651

RESUMEN

Bats have been reported to adjust the energy of their outgoing vocalizations to target range (R) in a logarithmic fashion close to 20log10R which has been interpreted as providing one-way compensation for increasing echo levels during target approaches. However, it remains unknown how species using high-frequency calls, which are strongly affected by absorption, adjust their vocal outputs during approaches to point targets. We hypothesized that such species should compensate less than the 20log10R model predicts at longer distances and more at shorter distances as a consequence of the significant influence of absorption at longer ranges. Using a microphone array and an acoustic recording tag, we show that the output adjustments of two Hipposideros pratti and one Hipposiderosarmiger do not decrease logarithmically during approaches to different-sized targets. Consequently, received echo levels increase dramatically early in the approach phase with near-constant output levels, but level off late in the approach phase as a result of substantial output reductions. To improve echo-to-noise ratio, we suggest that bats using higher frequency vocalizations compensate less at longer ranges, where they are strongly affected by absorption. Close to the target, they decrease their output levels dramatically to mitigate reception of very high echo levels. This strategy maintains received echo levels between 6 and 40 dB re. 20 µPa2 s across different target sizes. The bats partially compensated for target size, but not in a one-to-one dB fashion, showing that these bats do not seek to stabilize perceived echo levels, but may instead use them to gauge target size.


Asunto(s)
Quirópteros/fisiología , Ecolocación , Metabolismo Energético , Vuelo Animal , Animales , Especificidad de la Especie
7.
Biol Lett ; 16(8): 20200134, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32750270

RESUMEN

Sperm whales use their gigantic nose to produce the most powerful sounds in the animal kingdom, presumably to echolocate deep-sea prey at long ranges and possibly to debilitate prey. To test these hypotheses, we deployed sound recording tags (DTAG-4) on the tip of the nose of three sperm whales. One of these recordings yielded over 6000 echo streams from organisms detected up to 144 m ahead of the whale, supporting a long-range prey detection function of the sperm whale biosonar. The whale navigated this complex acoustic scene by maintaining a stable, long-range acoustic gaze suggesting continual resource evaluation. Less than 10% of the echoic organisms recorded by the tag were targeted for capture and only 18% of the buzzes were emitted within the 50 m depth interval of maximum organism encounter rate, demonstrating echo-guided prey selection. Buzzes were initiated more than 20 m from the prey, showing that sperm whales do not debilitate their prey with sound, but trade echo levels for reduced forward masking and rapid updates on prey location in keeping with the lower manoeuvrability of these large predators. We conclude that the powerful biosonar of sperm whales enables long-range echolocation and selection of prey, but not acoustic debilitation.


Asunto(s)
Ecolocación , Cachalote , Acústica , Animales , Sonido , Espectrografía del Sonido , Vocalización Animal , Ballenas
8.
J Exp Biol ; 222(Pt 16)2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31350302

RESUMEN

Echolocating mammals generally target individual prey items by transitioning through the biosonar phases of search (slow-rate, high-amplitude outputs), approach (gradually increasing rate and decreasing output amplitude) and buzzing (high-rate, low-amplitude outputs). The range to the main target of interest is often considered the key or sole driver of such biosonar adjustments of acoustic gaze. However, the actively generated auditory scene of an echolocator invariably comprises a large number of other reflectors and noise sources that likely also impact the biosonar strategies and source parameters implemented by an echolocating animal in time and space. In toothed whales, the importance of context on biosonar adjustments is largely unknown. To address this, we trained two harbour porpoises to actively approach the same sound recording target over the same approach distance in two highly different environments: a PVC-lined pool and a semi-natural net pen in a harbour, while blind-folded and wearing a sound recording tag (DTAG-4). We show that the approaching porpoises used considerably shorter interclick intervals (ICIs) in the pool than in the net pen, except during the buzz phase, where slightly longer ICIs were used in the pool. We further show that average click source levels were 4-7 dB higher in the net pen. Because of the very low-level in-band ambient noise in both environments, we posit that the porpoises adapted their echolocation strategy to the different reverberation levels between the two settings. We demonstrate that harbour porpoises use different echolocation strategies and biosonar parameters in two different environments for solving an otherwise identical target approach task and thus highlight that biosonar adjustments are both range and context dependent.


Asunto(s)
Ecolocación , Ambiente , Phocoena/fisiología , Animales , Femenino , Conducta Predatoria
9.
J Exp Biol ; 222(Pt 2)2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30478155

RESUMEN

Echolocating toothed whales generally adjust click intensity and rate according to target range to ensure that echoes from targets of interest arrive before a subsequent click is produced, presumably facilitating range estimation from the delay between clicks and returning echoes. However, this click-echo-click paradigm for the dolphin biosonar is mostly based on experiments with stationary animals echolocating fixed targets at ranges below ∼120 m. Therefore, we trained two bottlenose dolphins instrumented with a sound recording tag to approach a target from ranges up to 400 m and either touch the target (subject TRO) or detect a target orientation change (subject SAY). We show that free-swimming dolphins dynamically increase interclick interval (ICI) out to target ranges of ∼100 m. TRO consistently kept ICIs above the two-way travel time (TWTT) for target ranges shorter than ∼100 m, whereas SAY switched between clicking at ICIs above and below the TWTT for target ranges down to ∼25 m. Source levels changed on average by 17log10(target range), but with considerable variation for individual slopes (4.1 standard deviations for by-trial random effects), demonstrating that dolphins do not adopt a fixed automatic gain control matched to target range. At target ranges exceeding ∼100 m, both dolphins frequently switched to click packet production in which interpacket intervals exceeded the TWTT, but ICIs were shorter than the TWTT. We conclude that the click-echo-click paradigm is not a fixed echolocation strategy in dolphins, and we demonstrate the first use of click packets for free-swimming dolphins when solving an echolocation task.


Asunto(s)
Delfín Mular/fisiología , Ecolocación , Orientación Espacial , Natación , Animales , Masculino , Conejos
10.
Proc Biol Sci ; 285(1872)2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29445018

RESUMEN

Shipping is the dominant marine anthropogenic noise source in the world's oceans, yet we know little about vessel encounter rates, exposure levels and behavioural reactions for cetaceans in the wild, many of which rely on sound for foraging, communication and social interactions. Here, we used animal-borne acoustic tags to measure vessel noise exposure and foraging efforts in seven harbour porpoises in highly trafficked coastal waters. Tagged porpoises encountered vessel noise 17-89% of the time and occasional high-noise levels coincided with vigorous fluking, bottom diving, interrupted foraging and even cessation of echolocation, leading to significantly fewer prey capture attempts at received levels greater than 96 dB re 1 µPa (16 kHz third-octave). If such exposures occur frequently, porpoises, which have high metabolic requirements, may be unable to compensate energetically with negative long-term fitness consequences. That shipping noise disrupts foraging in the high-frequency-hearing porpoise raises concerns that other toothed whale species may also be affected.


Asunto(s)
Conducta Alimentaria , Ruido/efectos adversos , Phocoena/fisiología , Navíos , Animales , Dinamarca , Ecolocación
12.
J Exp Biol ; 220(Pt 14): 2654-2665, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28526686

RESUMEN

Toothed whales have evolved to live in extremely different habitats and yet they all rely strongly on echolocation for finding and catching prey. Such biosonar-based foraging involves distinct phases of searching for, approaching and capturing prey, where echolocating animals gradually adjust sonar output to actively shape the flow of sensory information. Measuring those outputs in absolute levels requires hydrophone arrays centred on the biosonar beam axis, but this has never been done for wild toothed whales approaching and capturing prey. Rather, field studies make the assumption that toothed whales will adjust their biosonar in the same manner to arrays as they will when approaching prey. To test this assumption, we recorded wild botos (Inia geoffrensis) as they approached and captured dead fish tethered to a hydrophone in front of a star-shaped seven-hydrophone array. We demonstrate that botos gradually decrease interclick intervals and output levels during prey approaches, using stronger adjustment magnitudes than predicted from previous boto array data. Prey interceptions are characterised by high click rates, but although botos buzz during prey capture, they do so at lower click rates than marine toothed whales, resulting in a much more gradual transition from approach phase to buzzing. We also demonstrate for the first time that wild toothed whales broaden biosonar beamwidth when closing in on prey, as is also seen in captive toothed whales and bats, thus resulting in a larger ensonified volume around the prey, probably aiding prey tracking by decreasing the risk of prey evading ensonification.


Asunto(s)
Delfines/fisiología , Ecolocación/fisiología , Conducta Predatoria/fisiología , Animales , Brasil , Peces , Ríos , Sonido , Espectrografía del Sonido
13.
Adv Exp Med Biol ; 875: 1167-73, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26611083

RESUMEN

Despite a major research effort, no generally accepted exposure limits are available for harbor porpoises. Recent studies of the temporary threshold shift (TTS) in porpoises indicate that the sound exposure levels (SELs) required to induce low levels of TTS depend on stimulus frequency and roughly parallel the shape of the audiogram. A number of studies on behavioral avoidance reactions (negative phonotaxis) to pingers, seal scarers, and pile driving show a similar dependence on stimulus frequency. Both TTS and behavioral data suggest that weighting sound pressure levels with a filter function resembling the inverted audiogram would be appropriate.


Asunto(s)
Exposición a Riesgos Ambientales , Ruido , Phocoena/fisiología , Animales , Umbral Auditivo/fisiología , Conducta Animal
14.
Adv Exp Med Biol ; 875: 1237-42, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26611092

RESUMEN

In recent years, several sound and movement recording tags have been developed to sample the acoustic field experienced by cetaceans and their reactions to it. However, little is known about how tag placement and an animal's orientation in the sound field affect the reliability of on-animal recordings as proxies for actual exposure. Here, we quantify sound exposure levels recorded with a DTAG-3 tag on a captive harbor porpoise exposed to vessel noise in a controlled acoustic environment. Results show that flow noise is limiting onboard noise recordings, whereas no evidence of body shading has been found for frequencies of 2-20 kHz.


Asunto(s)
Acústica , Actividades Humanas , Ruido , Phocoena/fisiología , Animales , Dinamarca , Humanos , Reproducibilidad de los Resultados
15.
Adv Physiol Educ ; 40(3): 313-8, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27445278

RESUMEN

The laboratory has been given a central role in physiology education, and teachers report that it is motivating for students to undertake experimental work on live animals or measuring physiological responses on the students themselves. Since motivation is a critical variable for academic learning and achievement, then we must concern ourselves with questions that examine how students engage in laboratory work and persist at such activities. The purpose of the present study was to investigate how laboratory work influences student motivation in physiology. We administered the Lab Motivation Scale to assess our students' levels of interest, willingness to engage (effort), and confidence in understanding (self-efficacy). We also asked students about the role of laboratory work for their own learning and their experience in the physiology laboratory. Our results documented high levels of interest, effort, and self-efficacy among the students. Correlation analyses were performed on the three motivation scales and exam results, yet a significant correlation was only found between self-efficacy in laboratory work and academic performance at the final exam. However, almost all students reported that laboratory work was very important for learning difficult concepts and physiological processes (e.g., action potential), as the hands-on experiences gave a more concrete idea of the learning content and made the content easier to remember. These results have implications for classroom practice as biology students find laboratory exercises highly motivating, despite their different personal interests and subject preferences. This highlights the importance of not replacing laboratory work by other nonpractical approaches, for example, video demonstrations or computer simulations.


Asunto(s)
Ciencia del Laboratorio Clínico/educación , Motivación , Fisiología/educación , Autoeficacia , Estudiantes del Área de la Salud/psicología , Enseñanza/psicología , Animales , Braquiuros , Bufo marinus , Femenino , Cobayas , Humanos , Masculino , Oncorhynchus mykiss , Encuestas y Cuestionarios
16.
Proc Biol Sci ; 282(1802)2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-25652830

RESUMEN

Early tetrapods faced an auditory challenge from the impedance mismatch between air and tissue in the transition from aquatic to terrestrial lifestyles during the Early Carboniferous (350 Ma). Consequently, tetrapods may have been deaf to airborne sounds for up to 100 Myr until tympanic middle ears evolved during the Triassic. The middle ear morphology of recent urodeles is similar to that of early 'lepospondyl' microsaur tetrapods, and experimental studies on their hearing capabilities are therefore useful to understand the evolutionary and functional drivers behind the shift from aquatic to aerial hearing in early tetrapods. Here, we combine imaging techniques with neurophysiological measurements to resolve how the change from aquatic larvae to terrestrial adult affects the ear morphology and sensory capabilities of salamanders. We show that air-induced pressure detection enhances underwater hearing sensitivity of salamanders at frequencies above 120 Hz, and that both terrestrial adults and fully aquatic juvenile salamanders can detect airborne sound. Collectively, these findings suggest that early atympanic tetrapods may have been pre-equipped to aerial hearing and are able to hear airborne sound better than fish on land. When selected for, this rudimentary hearing could have led to the evolution of tympanic middle ears.


Asunto(s)
Ambystoma/fisiología , Metamorfosis Biológica , Ambystoma/anatomía & histología , Ambystoma/crecimiento & desarrollo , Animales , Oído Medio/anatomía & histología , Oído Medio/fisiología , Potenciales Evocados Auditivos , Audición/fisiología , Larva/anatomía & histología , Larva/fisiología
17.
J Exp Biol ; 218(Pt 3): 381-7, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25653420

RESUMEN

In the transition from an aquatic to a terrestrial lifestyle, vertebrate auditory systems have undergone major changes while adapting to aerial hearing. Lungfish are the closest living relatives of tetrapods and their auditory system may therefore be a suitable model of the auditory systems of early tetrapods such as Acanthostega. Therefore, experimental studies on the hearing capabilities of lungfish may shed light on the possible hearing capabilities of early tetrapods and broaden our understanding of hearing across the water-to-land transition. Here, we tested the hypotheses that (i) lungfish are sensitive to underwater pressure using their lungs as pressure-to-particle motion transducers and (ii) lungfish can detect airborne sound. To do so, we used neurophysiological recordings to estimate the vibration and pressure sensitivity of African lungfish (Protopterus annectens) in both water and air. We show that lungfish detect underwater sound pressure via pressure-to-particle motion transduction by air volumes in their lungs. The morphology of lungfish shows no specialized connection between these air volumes and the inner ears, and so our results imply that air breathing may have enabled rudimentary pressure detection as early as the Devonian era. Additionally, we demonstrate that lungfish in spite of their atympanic middle ear can detect airborne sound through detection of sound-induced head vibrations. This strongly suggests that even vertebrates with no middle ear adaptations for aerial hearing, such as the first tetrapods, had rudimentary aerial hearing that may have led to the evolution of tympanic middle ears in recent tetrapods.


Asunto(s)
Evolución Biológica , Peces/fisiología , Animales , Oído Medio/fisiología , Potenciales Evocados , Audición/fisiología , Pulmón/fisiología , Presión , Sonido , Vibración
18.
J Exp Biol ; 218(Pt 19): 3091-101, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26447198

RESUMEN

Toothed whales produce echolocation clicks with source parameters related to body size; however, it may be equally important to consider the influence of habitat, as suggested by studies on echolocating bats. A few toothed whale species have fully adapted to river systems, where sonar operation is likely to result in higher clutter and reverberation levels than those experienced by most toothed whales at sea because of the shallow water and dense vegetation. To test the hypothesis that habitat shapes the evolution of toothed whale biosonar parameters by promoting simpler auditory scenes to interpret in acoustically complex habitats, echolocation clicks of wild Amazon river dolphins were recorded using a vertical seven-hydrophone array. We identified 404 on-axis biosonar clicks having a mean SLpp of 190.3 ± 6.1 dB re. 1 µPa, mean SLEFD of 132.1 ± 6.0 dB re. 1 µPa(2)s, mean Fc of 101.2 ± 10.5 kHz, mean BWRMS of 29.3 ± 4.3 kHz and mean ICI of 35.1 ± 17.9 ms. Piston fit modelling resulted in an estimated half-power beamwidth of 10.2 deg (95% CI: 9.6-10.5 deg) and directivity index of 25.2 dB (95% CI: 24.9-25.7 dB). These results support the hypothesis that river-dwelling toothed whales operate their biosonars at lower amplitude and higher sampling rates than similar-sized marine species without sacrificing high directivity, in order to provide high update rates in acoustically complex habitats and simplify auditory scenes through reduced clutter and reverberation levels. We conclude that habitat, along with body size, is an important evolutionary driver of source parameters in toothed whale biosonars.


Asunto(s)
Delfines/fisiología , Ecolocación/fisiología , Animales , Brasil , Ecosistema , Ríos , Sonido , Espectrografía del Sonido
19.
BMC Zool ; 9(1): 9, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679717

RESUMEN

Most bats hunt insects on the wing at night using echolocation as their primary sensory modality, but nevertheless maintain complex eye anatomy and functional vision. This raises the question of how and when insectivorous bats use vision during their largely nocturnal lifestyle. Here, we test the hypothesis that the small insectivorous bat, Myotis daubentonii, relies less on echolocation, or dispenses with it entirely, as visual cues become available during challenging acoustic noise conditions. We trained five wild-caught bats to land on a spherical target in both silence and when exposed to broad-band noise to decrease echo detectability, while light conditions were manipulated in both spectrum and intensity. We show that during noise exposure, the bats were almost three times more likely to use multiple attempts to solve the task compared to in silent controls. Furthermore, the bats exhibited a Lombard response of 0.18 dB/dBnoise and decreased call intervals earlier in their flight during masking noise exposures compared to in silent controls. Importantly, however, these adjustments in movement and echolocation behaviour did not differ between light and dark control treatments showing that small insectivorous bats maintain the same echolocation behaviour when provided with visual cues under challenging conditions for echolocation. We therefore conclude that bat echolocation is a hard-wired sensory system with stereotyped compensation strategies to both target range and masking noise (i.e. Lombard response) irrespective of light conditions. In contrast, the adjustments of call intervals and movement strategies during noise exposure varied substantially between individuals indicating a degree of flexibility that likely requires higher order processing and perhaps vocal learning.

20.
Curr Biol ; 34(11): 2509-2516.e3, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38744283

RESUMEN

Acoustic cues are crucial to communication, navigation, and foraging in many animals, which hence face the problem of detecting and discriminating these cues in fluctuating noise levels from natural or anthropogenic sources. Such auditory dynamics are perhaps most extreme for echolocating bats that navigate and hunt prey on the wing in darkness by listening for weak echo returns from their powerful calls in complex, self-generated umwelts.1,2 Due to high absorption of ultrasound in air and fast flight speeds, bats operate with short prey detection ranges and dynamic sensory volumes,3 leading us to hypothesize that bats employ superfast vocal-motor adjustments to rapidly changing sensory scenes. To test this hypothesis, we investigated the onset and offset times and magnitude of the Lombard response in free-flying echolocating greater mouse-eared bats exposed to onsets of intense constant or duty-cycled masking noise during a landing task. We found that the bats invoked a bandwidth-dependent Lombard response of 0.1-0.2 dB per dB increase in noise, with very short delay and relapse times of 20 ms in response to onsets and termination of duty-cycled noise. In concert with the absence call time-locking to noise-free periods, these results show that free-flying bats exhibit a superfast, but hard-wired, vocal-motor response to increased noise levels. We posit that this reflex is mediated by simple closed-loop audio-motor feedback circuits that operate independently of wingbeat and respiration cycles to allow for rapid adjustments to the highly dynamic auditory scenes encountered by these small predators.


Asunto(s)
Quirópteros , Ecolocación , Vuelo Animal , Animales , Quirópteros/fisiología , Ecolocación/fisiología , Vuelo Animal/fisiología , Ruido , Percepción Auditiva/fisiología , Masculino , Femenino , Vocalización Animal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA