Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Drug Deliv ; 31(1): 2392755, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39166341

RESUMEN

BACKGROUND: There exists an unfulfilled requirement for effective cochlear pharmacotherapy. Controlled local drug delivery could lead to effective bioavailability. The round window niche (RWN), a cavity in the middle ear, is connected to the cochlea via a membrane through which drug can diffuse. We are developing individualized drug-eluting RWN implants (RNIs). To test their effectiveness in guinea pigs, a commonly used model in cochlear pharmacology studies, it is first necessary to develop guinea pig RNIs (GP-RNI). METHODS: Since guinea pigs do not have a RWN such as it is present in humans and to reduce the variables in in vivo studies, a one-size-fits-all GP-RNI model was designed using 12 data sets of Dunkin-Hartley guinea pigs. The model was 3D-printed using silicone. The accuracy and precision of printing, distribution of the sample ingredient dexamethasone (DEX), biocompatibility, bio-efficacy, implantability and drug release were tested in vitro. The GP-RNI efficacy was validated in cochlear implant-traumatized guinea pigs in vivo. RESULTS: The 3D-printed GP-RNI was precise, accurate and fitted in all tested guinea pig RWNs. DEX was homogeneously included in the silicone. The GP-RNI containing 1% DEX was biocompatible, bio-effective and showed a two-phase and sustained DEX release in vitro, while it reduced fibrous tissue growth around the cochlear implant in vivo. CONCLUSIONS: We developed a GP-RNI that can be used for precise inner ear drug delivery in guinea pigs, providing a reliable platform for testing the RNI's safety and efficacy, with potential implications for future clinical translation.


Asunto(s)
Implantes Cocleares , Dexametasona , Sistemas de Liberación de Medicamentos , Ventana Redonda , Cobayas , Animales , Ventana Redonda/efectos de los fármacos , Ventana Redonda/metabolismo , Dexametasona/administración & dosificación , Dexametasona/farmacocinética , Dexametasona/farmacología , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Impresión Tridimensional , Cóclea/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA