Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
BMC Microbiol ; 23(1): 340, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37974095

RESUMEN

BACKGROUND: The microbiota in fish external mucus is mainly known for having a role in homeostasis and protection against pathogens, but recent evidence suggests it is also involved in the host-specificity of some ectoparasites. In this study, we investigated the influence of seasonality and environmental factors on both fish external microbiota and monogenean gill ectoparasites abundance and diversity and assessed the level of covariations between monogenean and bacterial communities across seasons. To do so, we assessed skin and gill microbiota of two sparid species, Oblada melanura and Diplodus annularis, over a year and collected their specific monogenean ectoparasites belonging to the Lamellodiscus genus. RESULTS: Our results revealed that diversity and structure of skin and gill mucus microbiota were strongly affected by seasonality, mainly by the variations of temperature, with specific fish-associated bacterial taxa for each season. The diversity and abundance of parasites were also influenced by seasonality, with the abundance of some Lamellodiscus species significantly correlated to temperature. Numerous positive and negative correlations between the abundance of given bacterial genera and Lamellodiscus species were observed throughout the year, suggesting their differential interaction across seasons. CONCLUSIONS: The present study is one of the first to demonstrate the influence of seasonality and related abiotic factors on fish external microbiota over a year. We further identified potential interactions between gill microbiota and parasite occurrence in wild fish populations, improving current knowledge and understanding of the establishment of host-specificity.


Asunto(s)
Enfermedades de los Peces , Microbiota , Parásitos , Perciformes , Trematodos , Animales , Proyectos Piloto , Peces , Bacterias/genética , Enfermedades de los Peces/epidemiología
2.
Ann Bot ; 128(2): 193-204, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-33928352

RESUMEN

BACKGROUND AND AIMS: Abiotic and biotic stresses related to climate change have been associated with increased crown defoliation, decreased growth and a higher risk of mortality in many forest tree species, but the impact of stresses on tree reproduction and forest regeneration remains understudied. At the dry, warm margin of species distributions, flowering, pollination and seed maturation are expected to be affected by drought, late frost and other stresses, eventually resulting in reproduction failure. Moreover, inter-individual variation in reproductive performance versus other performance traits (growth, survival) could have important consequences for population dynamics. This study investigated the relationships among individual crown defoliation, growth and reproduction in a drought-prone population of European beech, Fagus sylvatica. METHODS: We used a spatially explicit mating model and marker-based parentage analyses to estimate effective female and male fecundities of 432 reproductive trees, which were also monitored for basal area increment and crown defoliation over 9 years. KEY RESULTS: Female and male fecundities varied markedly between individuals, more than did growth. Both female fecundity and growth decreased with increasing crown defoliation and competition, and increased with size. Moreover, the negative effect of defoliation on female fecundity was size-dependent, with a slower decline in female fecundity with increasing defoliation for the large individuals. Finally, a trade-off between growth and female fecundity was observed in response to defoliation: some large trees maintained significant female fecundity at the expense of reduced growth in response to defoliation, while some other defoliated trees maintained high growth at the expense of reduced female fecundity. CONCLUSIONS: Our results suggest that, while decreasing their growth, some large defoliated trees still contribute to reproduction through seed production and pollination. This non-coordinated decline of growth and fecundity at individual level in response to stress may compromise the evolution of stress-resistance traits at population level, and increase forest tree vulnerability.


Asunto(s)
Fagus , Bosques , Reproducción , Árboles , Madera
3.
BMC Genomics ; 20(1): 529, 2019 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-31248377

RESUMEN

BACKGROUND: The Arctic charr (Salvelinus alpinus) has a highly seasonal feeding cycle that comprises long periods of voluntary fasting and a short but intense feeding period during summer. Therefore, the charr represents an interesting species for studying appetite-regulating mechanisms in fish. RESULTS: In this study, we compared the brain transcriptomes of fed and feed deprived charr over a 4 weeks trial during their summer feeding season. Despite prominent differences in body condition between fed and feed deprived charr at the end of the trial, feed deprivation affected the brain transcriptome only slightly. In contrast, the transcriptome differed markedly over time in both fed and feed deprived charr, indicating strong shifts in basic cell metabolic processes possibly due to season, growth, temperature, or combinations thereof. The GO enrichment analysis revealed that many biological processes appeared to change in the same direction in both fed and feed deprived fish. In the feed deprived charr processes linked to oxygen transport and apoptosis were down- and up-regulated, respectively. Known genes encoding for appetite regulators did not respond to feed deprivation. Gene expression of Deiodinase 2 (DIO2), an enzyme implicated in the regulation of seasonal processes in mammals, was lower in response to season and feed deprivation. We further found a higher expression of VGF (non-acronymic) in the feed deprived than in the fed fish. This gene encodes for a neuropeptide associated with the control of energy metabolism in mammals, and has not been studied in relation to regulation of appetite and energy homeostasis in fish. CONCLUSIONS: In the Arctic charr, external and endogenous seasonal factors for example the increase in temperature and their circannual growth cycle, respectively, evoke much stronger responses in the brain than 4 weeks feed deprivation. The absence of a central hunger response in feed deprived charr give support for a strong resilience to the lack of food in this high Arctic species. DIO2 and VGF may play a role in the regulation of energy homeostasis and need to be further studied in seasonal fish.


Asunto(s)
Alimentación Animal , Encéfalo/metabolismo , Perfilación de la Expresión Génica , Salmoniformes/crecimiento & desarrollo , Salmoniformes/genética , Estaciones del Año , Animales , Encéfalo/crecimiento & desarrollo , Metabolismo Energético/genética , Anotación de Secuencia Molecular , Salmoniformes/metabolismo
4.
Proc Natl Acad Sci U S A ; 111(1): 314-9, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24351931

RESUMEN

Melatonin (N-acetyl-5-methoxytrypamine) is the vertebrate hormone of the night: circulating levels at night are markedly higher than day levels. This increase is driven by precisely regulated increases in acetylation of serotonin in the pineal gland by arylalkylamine N-acetyltransferase (AANAT), the penultimate enzyme in the synthesis of melatonin. This unique essential role of AANAT in vertebrate timekeeping is recognized by the moniker the timezyme. AANAT is also found in the retina, where melatonin is thought to play a paracrine role. Here, we focused on the evolution of AANAT in early vertebrates. AANATs from Agnathans (lamprey) and Chondrichthyes (catshark and elephant shark) were cloned, and it was found that pineal glands and retinas from these groups express a form of AANAT that is compositionally, biochemically, and kinetically similar to AANATs found in bony vertebrates (VT-AANAT). Examination of the available genomes indicates that VT-AANAT is absent from other forms of life, including the Cephalochordate amphioxus. Phylogenetic analysis and evolutionary rate estimation indicate that VT-AANAT evolved from the nonvertebrate form of AANAT after the Cephalochordate-Vertebrate split over one-half billion years ago. The emergence of VT-AANAT apparently involved a dramatic acceleration of evolution that accompanied neofunctionalization after a duplication of the nonvertebrate AANAT gene. This scenario is consistent with the hypotheses that the advent of VT-AANAT contributed to the evolution of the pineal gland and lateral eyes from a common ancestral photodetector and that it was not a posthoc recruitment.


Asunto(s)
N-Acetiltransferasa de Arilalquilamina/genética , Evolución Molecular , Regulación Enzimológica de la Expresión Génica , Melatonina/química , Secuencia de Aminoácidos , Animales , Biblioteca de Genes , Humanos , Lampreas , Funciones de Verosimilitud , Datos de Secuencia Molecular , Células Fotorreceptoras de Vertebrados/fisiología , Filogenia , Glándula Pineal/fisiología , Conformación Proteica , Retina/fisiología , Homología de Secuencia de Aminoácido , Tiburones , Ovinos , Factores de Tiempo , Vertebrados
5.
J Pineal Res ; 59(3): 354-64, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26267754

RESUMEN

Melatonin is an important component of the vertebrates circadian system, synthetized from serotonin by the successive action of the arylalkylamine N-acetyltransferase (Aanat: serotonin→N-acetylserotonin) and acetylserotonin-O-methyltransferase (Asmt: N-acetylserotonin→melatonin). Aanat is responsible for the daily rhythm in melatonin production. Teleost fish are unique because they express two Aanat genes, aanat1 and aanat2, mainly expressed in the retina and pineal gland, respectively. In silico analysis indicated that the teleost-specific whole-genome duplication generated Aanat1 duplicates (aanat1a and aanat1b); some fish express both of them, while others express either one of the isoforms. Here, we bring the first information on the structure, function, and distribution of Aanat1a and Aanat1b in a teleost, the sea bass Dicentrarchus labrax. Aanat1a and Aanat1b displayed a wide and distinct distribution in the nervous system and peripheral tissues, while Aanat2 appeared as a pineal enzyme. Co-expression of Aanats with asmt was found in the pineal gland and the three retinal nuclear layers. Enzyme kinetics indicated subtle differences in the affinity and catalytic efficiency of Aanat1a and Aanat1b for indolethylamines and phenylethylamines, respectively. Our data are consistent with the idea that Aanat2 is a pineal enzyme involved in melatonin production, while Aanat1 enzymes have a broader range of functions including melatonin synthesis in the retina, and catabolism of serotonin and dopamine in the retina and other tissues. The data are discussed in light of the recently uncovered roles of N-acetylserotonin and N-acetyldopamine as antioxidants, neuroprotectants, and modulators of cell proliferation and enzyme activities.


Asunto(s)
N-Acetiltransferasa de Arilalquilamina/metabolismo , Lubina/metabolismo , Animales , Dopamina/análogos & derivados , Dopamina/metabolismo , Serotonina/análogos & derivados , Serotonina/metabolismo
6.
Anim Microbiome ; 6(1): 42, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080784

RESUMEN

BACKGROUND: While teleost fishes represent two thirds of marine vertebrates, the role of their external microbiota in relationship with their environment remains poorly studied, especially in wild populations. Hence, the interaction of their microbiota with ectoparasites is largely unknown. Microbiota can act as a protective barrier against pathogens, and/or be involved in host recognition by parasites. Thus, host-parasite associations should now be considered as a tripartite interplay where the microbiota shapes the host phenotype and its relation to parasites. Monogeneans (Platyhelminthes) are direct life cycle ectoparasites commonly found on teleost skin and gills. The role of bacterial communities within skin and gill mucus which either pre-exist monogeneans infestation or follow it remain unclear. This is investigated in this study using the association between Sparidae (Teleostei) and their specific monogenean ectoparasites of the Lamellodiscus genus. We are exploring specificity mechanisms through the characterization of the external mucus microbiota of two wild sparid species using 16s rRNA amplicon sequencing. We investigated how these bacterial communities are related to constrated Lamellodiscus monogeneans parasitic load. RESULTS: Our results revealed that the increase in Lamellodiscus load is linked to an increase in bacterial diversity in the skin mucus of D. annularis specimens. The date of capture of D. annularis individuals appears to influence the Lamellodiscus load. Correlations between the abundance of bacterial taxa and Lamellodiscus load were found in gill mucus of both species. Abundance of Flavobacteriaceae family was strongly correlated with the Lamellodiscus load in gill mucus of both species, as well as the potentially pathogenic bacterial genus Tenacibaculum in D. annularis gill mucus. Negative correlations were observed between Lamellodiscus load and the abundance in Vibrionaceae in gill mucus of D. annularis, and the abundance in Fusobacteria in gill mucus of P. acarne specimens, suggesting potential applications of these bacteria in mitigating parasitic infections in fish. CONCLUSIONS: Our findings highlight the dynamic nature of fish microbiota, in particular in relation with monogeneans infestations in two wild sparid species. More generally, this study emphasizes the links between hosts, bacterial communities and parasites, spanning from the dynamics of co-infection to the potential protective role of the host's microbiota.

7.
Physiol Genomics ; 45(17): 774-85, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23859940

RESUMEN

Herbivores are predicted to evolve appropriate mechanisms to process the plant secondary compounds (PSCs) in their diet, and these mechanisms are likely specific to particular suites of PSCs. Changes in diet composition over evolutionary time should select for appropriate alterations in metabolism of the more recent dietary components. We investigated differences in gene expression profiles in the liver with respect to prior ecological and evolutionary experience with PSCs in the desert woodrat, Neotoma lepida. This woodrat species has populations in the Mojave Desert that have switched from feeding on juniper to feeding on creosote at the end of the Holocene as well as populations in the Great Basin Desert that still feed on the ancestral diet of juniper and are naïve to creosote. Juniper and creosote have notable differences in secondary chemistry. Woodrats from the Mojave and Great Basin Deserts were subjected to a fully crossed feeding trial on diets of juniper and creosote after which their livers were analyzed for gene expression. Hybridization of hepatic mRNAs to laboratory rat microarrays resulted in a total of 20,031 genes that met quality control standards. We analyzed differences in large-scale patterns of liver gene expression with respect to GO term enrichment. Diet had a larger effect on gene expression than population membership. However, woodrats with no prior evolutionary experience to the diet upregulated a greater proportion of genes indicative of physiological stress compared with those on their natural diet. This pattern may be the result of a naïve animal's attempting to mitigate physiological damage caused by novel PSCs.


Asunto(s)
Expresión Génica , Herbivoria/genética , Hígado/fisiología , Plantas/química , Sigmodontinae/genética , Animales , Biotransformación/genética , Creosota , Dieta , Ecosistema , Femenino , Preferencias Alimentarias/fisiología , Genética de Población , Juniperus/química , Masculino , Plantas/metabolismo , Sigmodontinae/fisiología
8.
Mol Ecol ; 22(17): 4397-412, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23980761

RESUMEN

Extant rear-edge populations located in former glacial refugia remain understudied despite their high conservation value. These populations should have experienced strong genetic drift due to their small size and long isolation. Moreover, the prolonged action of isolation by distance in refugial areas should result in stronger regional spatial genetic structure (SGS) than in recolonized areas, but empirical tests of this prediction are scarce. To fill this gap, we first used a set of 16 microsatellite markers to investigate the genetic structure of European beech in France in 65 populations from three refugial areas and one control recolonized (nonrefugial) area. Then, using the same approach, we reanalysed published isozyme data from 375 populations distributed across the entire species range. We found stronger genetic differentiation among populations in refugia than in recolonized areas. However, contrary to expectations, regional SGS was lower within refugia than within recolonized areas. Published studies presenting similar analyses suggest that our results could have generality across different biogeographical settings and types of organisms. Strong and prolonged genetic drift in refugial areas could have erased the signature of range expansions that is still visible in recolonized areas. Our results therefore suggest that Pleistocene population isolation has played a key role in increasing the genetic complexity of extant rear-edge populations.


Asunto(s)
Fagus/genética , Variación Genética , Genética de Población , Teorema de Bayes , Cambio Climático , Análisis por Conglomerados , ADN de Plantas/genética , Ecosistema , Fagus/enzimología , Francia , Flujo Genético , Isoenzimas , Repeticiones de Microsatélite
9.
Int J Parasitol ; 52(8): 559-567, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35358503

RESUMEN

Monogeneans are highly diverse fish ectoparasites with a direct life cycle, widely distributed, and are known to generally display strict host specificity. Factors related to the hosts and the parasite have been suggested to explain this high specificity. Monogeneans have also been observed to colonise fish species not in their natural host range under experimental conditions. We developed a specific metabarcoding protocol and applied it on the Sparidae-Lamellodiscus host-parasite system, to assess parasite diversity on skin and gills of several sparid host species. We first demonstrated that the use of a metabarcoding approach provided a better understanding of the diversity of monogeneans associated with teleost skin and gills than traditional approaches based on morphological identification. We identified a high diversity of both expected and unexpected (never observed on this host species) Lamellodiscus spp. on each host species and on skin and gills. No significant difference in parasite diversity was found between skin and gills. These results suggest that the establishment of the observed host specificity in monogeneans relies on multiple levels of regulation, involving the survival capacity of the larvae and host recognition mechanisms.


Asunto(s)
Enfermedades de los Peces , Perciformes , Trematodos , Animales , Enfermedades de los Peces/parasitología , Peces/parasitología , Branquias/parasitología , Especificidad del Huésped , Interacciones Huésped-Parásitos , Perciformes/parasitología , Especificidad de la Especie , Trematodos/fisiología
10.
Anim Microbiome ; 4(1): 27, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35418308

RESUMEN

BACKGROUND: Animal-associated microbial communities appear to be key factors in host physiology, ecology, evolution and its interactions with the surrounding environment. Teleost fish have received relatively little attention in the study of surface-associated microbiota. Besides the important role of microbiota in homeostasis and infection prevention, a few recent studies have shown that fish mucus microbiota may interact with and attract some specific parasitic species. However, our understanding of external microbial assemblages, in particular regarding the factors that determine their composition and potential interactions with parasites, is still limited. This is the objective of the present study that focuses on a well-known fish-parasite interaction, involving the Sparidae (Teleostei), and their specific monogenean ectoparasites of the Lamellodiscus genus. We characterized the skin and gill mucus bacterial communities using a 16S rRNA amplicon sequencing, tested how fish ecological traits and host evolutionary history are related to external microbiota, and assessed if some microbial taxa are related to some Lamellodiscus species. RESULTS: Our results revealed significant differences between skin and gill microbiota in terms of diversity and structure, and that sparids establish and maintain tissue and species-specific bacterial communities despite continuous exposure to water. No phylosymbiosis pattern was detected for either gill or skin microbiota, suggesting that other host-related and environmental factors are a better regulator of host-microbiota interactions. Diversity and structure of external microbiota were explained by host traits: host species, diet and body part. Numerous correlations between the abundance of given bacterial genera and the abundance of given Lamellodiscus species have been found in gill mucus, including species-specific associations. We also found that the external microbiota of the only unparasitized sparid species in this study, Boops boops, harbored significantly more Fusobacteria and three genera, Shewenella, Cetobacterium and Vibrio, compared to the other sparid species, suggesting their potential involvement in preventing monogenean infection. CONCLUSIONS: This study is the first to explore the diversity and structure of skin and gill microbiota from a wild fish family and present novel evidence on the links between gill microbiota and monogenean species in diversity and abundance, paving the way for further studies on understanding host-microbiota-parasite interactions.

11.
Front Cell Dev Biol ; 10: 1015074, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407110

RESUMEN

Habenulae asymmetries are widespread across vertebrates and analyses in zebrafish, the reference model organism for this process, have provided insight into their molecular nature, their mechanisms of formation and their important roles in the integration of environmental and internal cues with a variety of organismal adaptive responses. However, the generality of the characteristics identified in this species remains an open question, even on a relatively short evolutionary scale, in teleosts. To address this question, we have characterized the broad organization of habenulae in the Atlantic salmon and quantified the asymmetries in each of the identified subdomains. Our results show that a highly conserved partitioning into a dorsal and a ventral component is retained in the Atlantic salmon and that asymmetries are mainly observed in the former as in zebrafish. A remarkable difference is that a prominent left-restricted pax6 positive nucleus is observed in the Atlantic salmon, but undetectable in zebrafish. This nucleus is not observed outside teleosts, and harbors a complex presence/absence pattern in this group, retaining its location and cytoarchitectonic organization in an elopomorph, the European eel. These findings suggest an ancient origin and high evolvability of this trait in the taxon. Taken together, our data raise novel questions about the variability of asymmetries across teleosts and their biological significance depending on ecological contexts.

12.
J Comp Physiol B ; 190(6): 731-748, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32880666

RESUMEN

Smoltification prepares juvenile Atlantic salmon (Salmo salar) for downstream migration. Dramatic changes characterize this crucial event in the salmon's life cycle, including increased gill Na+/K+-ATPase activity (NKA) and plasma hormone levels. The triggering of smoltification relies on photoperiod and is modulated by temperature. Both provide reliable information, to which fish have adapted for thousands of years, that allows deciphering daily and calendar time. Here we studied the impact of different photoperiod (natural, sustained winter solstice) and temperature (natural, ~ + 4° C) combinations, on gill NKA, plasma free triiodothyronine (T3) and thyroxine (T4), and melatonin (MEL; the time-keeping hormone), throughout smoltification. We also studied the impact of temperature history on pineal gland MEL production in vitro. The spring increase in gill NKA was less pronounced in smolts kept under sustained winter photoperiod and/or elevated temperature. Plasma thyroid hormone levels displayed day-night variations, which were affected by elevated temperature, either independently from photoperiod (decrease in T3 levels) or under natural photoperiod exclusively (increase in T4 nocturnal levels). Nocturnal MEL secretion was potentiated by the elevated temperature, which also altered the MEL profile under sustained winter photoperiod. Temperature also affected pineal MEL production in vitro, a response that depended on previous environmental acclimation of the organ. The results support the view that the salmon pineal is a photoperiod and temperature sensor, highlight the complexity of the interaction of these environmental factors on the endocrine system of S. salar, and indicate that climate change might compromise salmon's time "deciphering" during smoltification, downstream migration and seawater residence.


Asunto(s)
Melatonina/sangre , Salmo salar/metabolismo , Temperatura , Tiroxina/sangre , Triyodotironina/sangre , Aclimatación , Animales , Proteínas de Peces/metabolismo , Branquias/metabolismo , Estadios del Ciclo de Vida , Melatonina/metabolismo , Fotoperiodo , Glándula Pineal/metabolismo , Salmo salar/fisiología , Estaciones del Año , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
13.
PLoS One ; 14(9): e0221475, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31504055

RESUMEN

Next-generation sequencing methods are increasingly used to identify eukaryotic, unicellular and multicellular symbiont communities within hosts. In this study, we analyzed the non-specific reads obtained during a metabarcoding survey of the bacterial communities associated to three different tissues collected from 13 wild Mediterranean teleost fish species. In total, 30 eukaryotic genera were identified as putative parasites of teleosts, associated to skin mucus, gills mucus and intestine: 2 ascomycetes, 4 arthropods, 2 cnidarians, 7 nematodes, 10 platyhelminthes, 4 apicomplexans, 1 ciliate as well as one order in dinoflagellates (Syndiniales). These results highlighted that (1) the metabarcoding approach was able to uncover a large spectrum of symbiotic organisms associated to the fish species studied, (2) symbionts not yet identified in several teleost species were putatively present, (3) the parasitic diversity differed markedly across host species and (4) in most cases, the distribution of known parasitic genera within tissues is in accordance with the literature. The current work illustrates the large insights that can be gained by making maximum use of data from a metabarcoding approach.


Asunto(s)
Biodiversidad , Peces/parasitología , Metagenoma , Animales , Apicomplexa/genética , Artrópodos/genética , Ascomicetos/genética , Cilióforos/genética , Código de Barras del ADN Taxonómico/métodos , Peces/microbiología , Branquias/microbiología , Branquias/parasitología , Intestinos/microbiología , Intestinos/parasitología , Metagenómica/métodos , Nematodos/genética , Piel/microbiología , Piel/parasitología , Simbiosis
14.
Mar Genomics ; 29: 45-53, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27118202

RESUMEN

The Arctic charr (Salvelinus alpinus L.) inhabits fresh water ecosystems of the high North. The species has developed a strong phenotypic plasticity and variability in life history characteristics which has made this species an attractive model for investigations on phenotype plasticity, morph formation and ecological speciation. Further, the extreme seasonal variations in environmental conditions (e.g. food availability) in the high North induce seasonal changes in phenotype, which require precise timing mechanisms and physiological preparations. Individual gating of life-history strategies (e.g. formation of resident and sea-migrating morphs) and transitions (e.g. maturation) depends on conditional traits (size/energy status) at specific assessment time windows, and complex neuroendocrine regulation, which so far is poorly understood. In the absence of a reference genome, and in order to facilitate the investigation of the complex biological mechanisms of this unique fish model, the present study reveals a reference transcriptome for the Arctic charr. Using Roche 454 GS FLX+, we targeted various organs being either at the crossroads of many key pathways (neuroendocrine, metabolic, behavioral), of different ontological origins or displaying complementary physiological functions. The assemblage yielded 34,690 contigs greater than 1000bp with an average length (1690bp) and annotation rate (52%) within the range, or even higher, than what has been previously obtained with other teleost de novo transcriptomes. We dramatically improve the publically available transcript data on this species that may indeed be useful for various disciplines, from basic research to applied aspects related to conservation issues and aquaculture.


Asunto(s)
Estaciones del Año , Transcriptoma , Trucha/genética , Animales , Regiones Árticas , Femenino , Masculino , Noruega , Polimorfismo Genético , Svalbard
15.
Endocrinology ; 156(12): 4629-38, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26389691

RESUMEN

Photoperiod plays an essential role in the synchronization of metabolism, physiology, and behavior to the cyclic variations of the environment. In vertebrates, information is relayed by the pineal cells and translated into the nocturnal production of melatonin. The duration of this signal corresponds to the duration of the night. In fish, the pinealocytes are true photoreceptors in which the amplitude of the nocturnal surge is modulated by temperature in a species-dependent manner. Thus, the daily and annual variations in the amplitude and duration of the nocturnal melatonin signal provide information on daily and calendar time. Both light and temperature act on the activity of the penultimate enzyme in the melatonin biosynthesis pathway, the arylalkylamine N-acetyltransferase (serotonin → N-acetylserotonin). Although the mechanisms of the light/dark regulation of melatonin secretion are quite well understood, those of temperature remain unelucidated. More generally, the mechanisms of thermoreception are unknown in ectotherms. Here we provide the first evidence that two thermotransient receptor potential (TRP) channels, TRPV1 and TRPV4, are expressed in the pineal photoreceptor cells of a teleost fish, in which they modulate melatonin secretion in vitro. The effects are temperature dependent, at least for TRPV1. Our data support the idea that the pineal of fish is involved in thermoregulation and that the pineal photoreceptors are also thermoreceptors. In other nervous and nonnervous tissues, TRPV1 and TRPV4 display a ubiquitous but quantitatively variable distribution. These results are a fundamental step in the elucidation of the mechanisms of temperature transduction in fish.


Asunto(s)
Melatonina/metabolismo , Oncorhynchus mykiss , Células Fotorreceptoras de Vertebrados/metabolismo , Glándula Pineal/metabolismo , Canales Catiónicos TRPV/metabolismo , Termorreceptores/metabolismo , Animales , N-Acetiltransferasa de Arilalquilamina/metabolismo , Técnicas In Vitro , Técnicas de Cultivo de Órganos , Fotoperiodo , Glándula Pineal/citología , Salmonidae , Temperatura
16.
Gene ; 544(1): 56-66, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24768179

RESUMEN

The sea bass Dicentrarchus labrax is the center of interest of an increasing number of basic or applied research investigations, even though few genomic or transcriptomic data is available. Current public data only represent a very partial view of its transcriptome. To fill this need, we characterized brain and liver transcriptomes in a generalist manner that would benefit the entire scientific community. We also tackled some bioinformatics questions, related to the effect of RNA fragment size on the assembly quality. Using Illumina RNA-seq, we sequenced organ pools from both wild and farmed Atlantic and Mediterranean fishes. We built two distinct cDNA libraries per organ that only differed by the length of the selected mRNA fragments. Efficiency of assemblies performed on either or both fragments size differed depending on the organ, but remained very close reflecting the quality of the technical replication. We generated more than 19,538Mbp of data. Over 193million reads were assembled into 35,073 contigs (average length=2374bp; N50=3257). 59% contigs were annotated with SwissProt, which corresponded to 12,517 unique genes. We compared the Gene Ontology (GO) contig distribution between the sea bass and the tilapia. We also looked for brain and liver GO specific signatures as well as KEGG pathway coverage. 23,050 putative micro-satellites and 134,890 putative SNPs were identified. Our sampling strategy and assembly pipeline provided a reliable and broad reference transcriptome for the sea bass. It constitutes an indisputable quantitative and qualitative improvement of the public data, as it provides 5 times more base pairs with fewer and longer contigs. Both organs present unique signatures consistent with their specific physiological functions. The discrepancy in fragment size effect on assembly quality between organs lies in their difference in complexity and thus does not allow prescribing any general strategy. This information on two key organs will facilitate further functional approaches.


Asunto(s)
Lubina/genética , Encéfalo/metabolismo , Hígado/metabolismo , Transcriptoma , Animales , Biblioteca de Genes , Ontología de Genes , Análisis de Secuencia de ADN
17.
PLoS One ; 9(12): e112380, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25486407

RESUMEN

All biological functions in vertebrates are synchronized with daily and seasonal changes in the environment by the time keeping hormone melatonin. Its nocturnal surge is primarily due to the rhythmic activity of the arylalkylamine N-acetyl transferase AANAT, which thus became the focus of many investigations regarding its evolution and function. Various vertebrate isoforms have been reported from cartilaginous fish to mammals but their origin has not been clearly established. Using phylogeny and synteny, we took advantage of the increasing number of available genomes in order to test whether the various rounds of vertebrate whole genome duplications were responsible for the diversification of AANAT. We highlight a gene secondary loss of the AANAT2 in the Sarcopterygii, revealing for the first time that the AAANAT1/2 duplication occurred before the divergence between Actinopterygii (bony fish) and Sarcopterygii (tetrapods, lobe-finned fish, and lungfish). We hypothesize the teleost-specific whole genome duplication (WDG) generated the appearance of the AANAT1a/1b and the AANAT2/2'paralogs, the 2' isoform being rapidly lost in the teleost common ancestor (ray-finned fish). We also demonstrate the secondary loss of the AANAT1a in a Paracantopterygii (Atlantic cod) and of the 1b in some Ostariophysi (zebrafish and cave fish). Salmonids present an even more diverse set of AANATs that may be due to their specific WGD followed by secondary losses. We propose that vertebrate AANAT diversity resulted from 3 rounds of WGD followed by previously uncharacterized secondary losses. Extant isoforms show subfunctionalized localizations, enzyme activities and affinities that have increased with time since their emergence.


Asunto(s)
N-Acetiltransferasa de Arilalquilamina/genética , N-Acetiltransferasa de Arilalquilamina/metabolismo , Vertebrados/fisiología , Animales , Análisis por Conglomerados , Evolución Molecular , Humanos , Isoenzimas , Filogenia , Sintenía , Vertebrados/clasificación
18.
PLoS One ; 7(8): e41510, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22927909

RESUMEN

Detoxification enzymes play a key role in plant-herbivore interactions, contributing to the on-going evolution of ecosystem functional diversity. Mammalian detoxification systems have been well studied by the medical and pharmacological industries to understand human drug metabolism; however, little is known of the mechanisms employed by wild herbivores to metabolize toxic plant secondary compounds. Using a wild rodent herbivore, the desert woodrat (Neotoma lepida), we investigated genomic structural variation, sequence variability, and expression patterns in a multigene subfamily involved in xenobiotic metabolism, cytochrome P450 2B (CYP2B). We hypothesized that differences in CYP2B expression and sequence diversity could explain differential abilities of woodrat populations to consume native plant toxins. Woodrats from two distinct populations were fed diets supplemented with either juniper (Juniperus osteosperma) or creosote bush (Larrea tridentata), plants consumed by woodrats in their respective desert habitats. We used Southern blot and quantitative PCR to determine that the genomic copy number of CYP2B in both populations was equivalent, and similar in number to known rodent copy number. We compared CYP2B expression patterns and sequence diversity using cloned hepatic CYP2B cDNA. The resulting sequences were very diverse, and clustered into four major clades by amino acid similarity. Sequences from the experimental treatments were distributed non-randomly across a CYP2B tree, indicating unique expression patterns from woodrats on different diets and from different habitats. Furthermore, within each major CYP2B clade, sequences shared a unique combination of amino acid residues at 13 sites throughout the protein known to be important for CYP2B enzyme function, implying differences in the function of each major CYP2B variant. This work is the most comprehensive investigation of the genetic diversity of a detoxification enzyme subfamily in a wild mammalian herbivore, and contributes an initial genetic framework to our understanding of how a wild herbivore responds to critical changes in its diet.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Dieta , Variación Genética , Herbivoria/genética , Sigmodontinae/genética , Sigmodontinae/metabolismo , Secuencia de Aminoácidos , Animales , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Evolución Molecular , Dosificación de Gen , Humanos , Ratones , Plantas/toxicidad , Conejos , Ratas , Análisis de Secuencia
19.
C R Biol ; 335(1): 9-18, 2012 Jan.
Artículo en Francés | MEDLINE | ID: mdl-22226159

RESUMEN

The Greater White-toothed shrew Crocidura russula is short-lived species and the phase of senescence is greatly elongated in captivity. The loss of rhythmicity of biological functions that accompanies its aging is also well documented. C. russula is thus an excellent model to test the effects of aging on biological clocks. Melatonin is a key hormone in the synchronization of behaviors, metabolisms and physiological regulations with environmental factors. In the present work we want to know if the loss of rhythmicity and the reduced melatonin levels registered by the second year of life in this species could be associated to modified ultrastructural features of the pineal parenchyma, site of melatonin synthesis. Transmission electron microscopy (TEM) analysis of young (1-4 months) and old (25-28 months) shrew's pineals show that in older individuals, the parenchyma undergoes alterations affecting mainly nucleus, mitochondria and endoplasmic reticulum cisternae, with increased numbers of dense bodies and the formation of many concretions as well as a depletion of secretory products. These changes suggest a process of slowing pinealocytes metabolism which could explain the gradual reduction of melatonin levels registered during aging in C. russula.


Asunto(s)
Glándula Pineal/citología , Glándula Pineal/crecimiento & desarrollo , Musarañas/fisiología , Envejecimiento/fisiología , Animales , Relojes Biológicos/efectos de los fármacos , Núcleo Celular/ultraestructura , Retículo Endoplásmico/ultraestructura , Melatonina/metabolismo , Melatonina/fisiología , Microscopía Electrónica de Transmisión , Mitocondrias/ultraestructura
20.
PLoS One ; 4(6): e5904, 2009 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19526053

RESUMEN

BACKGROUND: Laboratory conditions nullify the extrinsic factors that determine the wild expected lifespan and release the intrinsic or potential lifespan. Thus, wild animals reared in a laboratory often show an increased lifespan, and consequently an increased senescence phase. Senescence is associated with a broad suite of physiological changes, including a decreased responsiveness of the circadian system. The time-keeping hormone melatonin, an important chemical player in this system, is suspected to have an anti-aging role. The Greater White-toothed shrew Crocidura russula is an ideal study model to address questions related to aging and associated changes in biological functions: its lifespan is short and is substantially increased in captivity; daily and seasonal rhythms, while very marked the first year of life, are dramatically altered during the senescence process which starts during the second year. Here we report on an investigation of the effects of melatonin administration on locomotor activity of aging shrews. METHODOLOGY/PRINCIPAL FINDINGS: 1) The diel fluctuations of melatonin levels in young, adult and aging shrews were quantified in the pineal gland and plasma. In both, a marked diel rhythm (low diurnal concentration; high nocturnal concentration) was present in young animals but then decreased in adults, and, as a result of a loss in the nocturnal production, was absent in old animals. 2) Daily locomotor activity rhythm was monitored in pre-senescent animals that had received either a subcutaneous melatonin implant, an empty implant or no implant at all. In non-implanted and sham-implanted shrews, the rhythm was well marked in adults. A marked degradation in both period and amplitude, however, started after the age of 14-16 months. This pattern was considerably delayed in melatonin-implanted shrews who maintained the daily rhythm for significantly longer. CONCLUSIONS: This is the first long term study (>500 days observation of the same individuals) that investigates the effects of continuous melatonin delivery. As such, it sheds new light on the putative anti-aging role of melatonin by demonstrating that continuous melatonin administration delays the onset of senescence. In addition, the shrew appears to be a promising mammalian model for elucidating the precise relationships between melatonin and aging.


Asunto(s)
Melatonina/administración & dosificación , Melatonina/metabolismo , Melatonina/fisiología , Glándula Pineal/metabolismo , Musarañas/fisiología , Envejecimiento , Animales , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/fisiología , Femenino , Masculino , Modelos Biológicos , Modelos Estadísticos , Actividad Motora/efectos de los fármacos , Movimiento , Periodicidad , Fotoperiodo , Musarañas/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA