Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Funct Integr Genomics ; 23(3): 231, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37432480

RESUMEN

Monkeypox is a viral zoonosis with symptoms that are reminiscent of those experienced in previous smallpox cases. The GSAID database (Global Initiative on Sharing Avian Influenza Data) was used to assess 630 genomes of MPXV. The phylogenetic study revealed six primary clades, as well as a smaller percentage in radiating clades. Individual clades that make up various nationalities may have formed as a result of a particular SNP hotspot type that mutated in a specific population. The most significant mutation based on a mutational hotspot analysis was found at G3729A and G5143A. The gene ORF138, which encodes the Ankyrin repeat (ANK) protein, was found to have the most mutations. This protein mediates molecular recognition via protein-protein interactions. It was shown that 243 host proteins interacted with 10 monkeypox proteins identified as the hub proteins E3, SPI2, C5, K7, E8, G6, N2, B14, CRMB, and A41 through 262 direct connections. The interaction with chemokine system-related proteins provides further evidence that the monkeypox virus suppresses human proteins to facilitate its survival against innate immunity. Several FDA-approved molecules were evaluated as possible inhibitors of F13, a significant envelope protein on the membrane of extracellular versions of the virus. A total of 2500 putative ligands were individually docked with the F13 protein. The interaction between the F13 protein and these molecules may help prevent the monkeypox virus from spreading. After being confirmed by experiments, these putative inhibitors could have an impact on the activity of these proteins and be used in monkeypox treatments.


Asunto(s)
Monkeypox virus , Mpox , Animales , Humanos , Filogenia , Genómica , Mutación
2.
Sci Adv ; 9(8): eabq0619, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36812310

RESUMEN

The predatory deltaproteobacterium Myxococcus xanthus uses a helically-trafficked motor at bacterial focal-adhesion (bFA) sites to power gliding motility. Using total internal reflection fluorescence and force microscopies, we identify the von Willebrand A domain-containing outer-membrane (OM) lipoprotein CglB as an essential substratum-coupling adhesin of the gliding transducer (Glt) machinery at bFAs. Biochemical and genetic analyses reveal that CglB localizes to the cell surface independently of the Glt apparatus; once there, it is recruited by the OM module of the gliding machinery, a heteroligomeric complex containing the integral OM ß barrels GltA, GltB, and GltH, as well as the OM protein GltC and OM lipoprotein GltK. This Glt OM platform mediates the cell-surface accessibility and retention of CglB by the Glt apparatus. Together, these data suggest that the gliding complex promotes regulated surface exposure of CglB at bFAs, thus explaining the manner by which contractile forces exerted by inner-membrane motors are transduced across the cell envelope to the substratum.


Asunto(s)
Myxococcales , Myxococcales/metabolismo , Adhesiones Focales/metabolismo , Adhesinas Bacterianas , Adhesión Bacteriana , Lipoproteínas , Proteínas Bacterianas/metabolismo
3.
Microbiol Spectr ; 10(5): e0129022, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36200915

RESUMEN

Secretion of high-molecular-weight polysaccharides across the bacterial envelope is ubiquitous, as it enhances prokaryotic survival in (a)biotic settings. Such polymers are often assembled by Wzx/Wzy- or ABC transporter-dependent schemes implicating outer membrane (OM) polysaccharide export (OPX) proteins in cell-surface polymer translocation. In the social predatory bacterium Myxococcus xanthus, the exopolysaccharide (EPS) pathway WzaX, major spore coat (MASC) pathway WzaS, and biosurfactant polysaccharide (BPS) pathway WzaB were herein found to be truncated OPX homologues of Escherichia coli Wza lacking OM-spanning α-helices. Comparative genomics across all bacteria (>91,000 OPX proteins identified and analyzed), complemented with cryo-electron tomography cell-envelope analyses, revealed such "truncated" WzaX/S/B architecture to be the most common among three defined OPX-protein structural classes independent of periplasm thickness. Fold recognition and deep learning revealed the conserved M. xanthus proteins MXAN_7418/3226/1916 (encoded beside wzaX/S/B, respectively) to be integral OM ß-barrels, with structural homology to the poly-N-acetyl-d-glucosamine synthase-dependent pathway porin PgaA. Such bacterial porins were identified near numerous genes for all three OPX protein classes. Interior MXAN_7418/3226/1916 ß-barrel electrostatics were found to match properties of their associated polymers. With MXAN_3226 essential for MASC export, and MXAN_7418 herein shown to mediate EPS translocation, we have designated this new secretion machinery component "Wzp" (i.e., Wz porin), with the final step of M. xanthus EPS/MASC/BPS secretion across the OM now proposed to be mediated by WzpX/S/B (i.e., MXAN_7418/3226/1916). Importantly, these data support a novel and widespread secretion paradigm for polysaccharide biosynthesis pathways in which those containing OPX components that cannot span the OM instead utilize ß-barrel porins to mediate polysaccharide transport across the OM. IMPORTANCE Diverse bacteria assemble and secrete polysaccharides that alter their physiologies through modulation of motility, biofilm formation, and host immune system evasion. Most such pathways require outer membrane (OM) polysaccharide export (OPX) proteins for sugar-polymer transport to the cell surface. In the prototypic Escherichia coli Group-1-capsule biosynthesis system, eight copies of this canonical OPX protein cross the OM with an α-helix, forming a polysaccharide-export pore. Herein, we instead reveal that most OPX proteins across all bacteria lack this α-helix, raising questions as to the manner by which most secreted polysaccharides actually exit cells. In the model developmental bacterium Myxococcus xanthus, we show this process to depend on OPX-coupled OM-spanning ß-barrel porins, with similar porins encoded near numerous OPX genes in diverse bacteria. Knowledge of the terminal polysaccharide secretion step will enable development of antimicrobial compounds targeted to blocking polymer export from outside the cell, thus bypassing any requirements for antimicrobial compound uptake by the cell.


Asunto(s)
Proteínas de Escherichia coli , Porinas , Porinas/genética , Porinas/metabolismo , Membrana Externa Bacteriana , Polímeros/química , Polímeros/metabolismo , Acetilglucosamina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Polisacáridos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Azúcares/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA