Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 36(2): e22137, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35066939

RESUMEN

Several studies have demonstrated the role of high glucose in promoting endothelial dysfunction utilizing traditional two-dimensional (2D) culture systems, which, however, do not replicate the complex organization of the endothelium within a vessel constantly exposed to flow. Here we describe the response to high glucose of micro- and macro-vascular human endothelial cells (EC) cultured in biomimetic microchannels fabricated through soft lithography and perfused to generate shear stress. In 3D macrovascular EC exposed to a shear stress of 0.4 Pa respond to high glucose with cytoskeletal remodeling and alterations in cell shape. Under the same experimental conditions, these effects are more pronounced in microvascular cells that show massive cytoskeletal disassembly and apoptosis after culture in high glucose. However, when exposed to a shear stress of 4 Pa, which is physiological in the microvasculature, human dermal microvascular endothelial cells (HDMEC) show alterations of the cytoskeleton but no apoptosis. This result emphasizes the sensitivity of HDMEC to different regimens of flow. No significant variations in the thickness of glycocalyx were detected in both human endothelial cells from the umbilical vein and HDMEC exposed to high glucose in 3D, whereas clear differences emerge between cells cultured in static 2D versus microfluidic channels. We conclude that culture in microfluidic microchannels unveils unique insights into endothelial dysfunction by high glucose.


Asunto(s)
Endotelio Vascular/metabolismo , Glucosa/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Apoptosis/fisiología , Técnicas de Cultivo Tridimensional de Células/métodos , Células Cultivadas , Citoesqueleto/metabolismo , Glicocálix/metabolismo , Humanos , Microfluídica/métodos , Microvasos/metabolismo , Estrés Mecánico
2.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769252

RESUMEN

Drug eluting magnesium (Mg) bioresorbable scaffolds represent a novel paradigm in percutaneous coronary intervention because Mg-based alloys are biocompatible, have adequate mechanical properties and can be resorbed without adverse events. Importantly, Mg is fundamental in many biological processes, mitigates the inflammatory response and is beneficial for the endothelium. Sirolimus is widely used as an antiproliferative agent in drug eluting stents to inhibit the proliferation of smooth muscle cells, thus reducing the occurrence of stent restenosis. Little is known about the potential interplay between sirolimus and Mg in cultured human coronary artery endothelial cells (hCAEC). Therefore, the cells were treated with sirolimus in the presence of different concentrations of extracellular Mg. Cell viability, migration, barrier function, adhesivity and nitric oxide synthesis were assessed. Sirolimus impairs the viability of subconfluent, but not of confluent cells independently from the concentration of Mg in the culture medium. In confluent cells, sirolimus inhibits migration, while it cooperates with Mg in exerting an anti-inflammatory action that might have a role in preventing restenosis and thrombosis.


Asunto(s)
Reestenosis Coronaria , Sirolimus , Humanos , Sirolimus/farmacología , Sirolimus/uso terapéutico , Células Endoteliales , Magnesio/farmacología , Stents , Endotelio , Resultado del Tratamiento
3.
Biochem Biophys Res Commun ; 626: 30-37, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-35970042

RESUMEN

Despite remaining the best in vitro model to resemble the human brain, a weakness of human cerebral organoids is the lack of the endothelial component that in vivo organizes in the blood brain barrier (BBB). Since the BBB is crucial to control the microenvironment of the nervous system, this study proposes a co-culture of BBB and cerebral organoids. We utilized a BBB model consisting of primary human brain microvascular endothelial cells and astrocytes in a transwell system. Starting from induced Pluripotent Stem Cells (iPSCs) we generated human cerebral organoids which were then cultured in the absence or presence of an in vitro model of BBB to evaluate potential effects on the maturation of cerebral organoids. By morphological analysis, it emerges that in the presence of the BBB the cerebral organoids are better organized than controls in the absence of the BBB. This effect might be due to Brain Derived Neurotrophic Factor (BDNF), a neurotrophic factor released by the endothelial component of the BBB, which is involved in neurodevelopment, neuroplasticity and neurosurvival.


Asunto(s)
Barrera Hematoencefálica , Células Madre Pluripotentes Inducidas , Organoides , Barrera Hematoencefálica/fisiología , Factor Neurotrófico Derivado del Encéfalo/farmacología , Diferenciación Celular/fisiología , Células Endoteliales , Humanos
4.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36613667

RESUMEN

Magnesium (Mg) is involved in the regulation of metabolism and in the maintenance of the homeostasis of all the tissues, including the brain, where it harmonizes nerve signal transmission and preserves the integrity of the blood-brain barrier. Mg deficiency contributes to systemic low-grade inflammation, the common denominator of most diseases. In particular, neuroinflammation is the hallmark of neurodegenerative disorders. Starting from a rapid overview on the role of magnesium in the brain, this narrative review provides evidences linking the derangement of magnesium balance with multiple sclerosis, Alzheimer's, and Parkinson's diseases.


Asunto(s)
Magnesio , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neuroinflamatorias , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Inflamación
5.
FASEB J ; 34(1): 1833-1845, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914607

RESUMEN

Exposure to real or simulated microgravity is sensed as a stress by mammalian cells, which activate a complex adaptive response. In human primary endothelial cells, we have recently shown the sequential intervention of various stress proteins which are crucial to prevent apoptosis and maintain cell function. We here demonstrate that mitophagy contributes to endothelial adaptation to gravitational unloading. After 4 and 10 d of exposure to simulated microgravity in the rotating wall vessel, the amount of BCL2 interacting protein 3, a marker of mitophagy, is increased and, in parallel, mitochondrial content, oxygen consumption, and maximal respiratory capacity are reduced, suggesting the acquisition of a thrifty phenotype to meet the novel metabolic challenges generated by gravitational unloading. Moreover, we suggest that microgravity induced-disorganization of the actin cytoskeleton triggers mitophagy, thus creating a connection between cytoskeletal dynamics and mitochondrial content upon gravitational unloading.


Asunto(s)
Adaptación Fisiológica/fisiología , Células Endoteliales/fisiología , Mitofagia/fisiología , Aclimatación/fisiología , Actinas/metabolismo , Apoptosis/fisiología , Línea Celular , Citoesqueleto/metabolismo , Células Endoteliales/metabolismo , Proteínas de Choque Térmico/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Mitocondrias/metabolismo , Mitocondrias/fisiología , Consumo de Oxígeno/fisiología , Fenotipo , Ingravidez , Simulación de Ingravidez/métodos
6.
FASEB J ; 33(5): 5957-5966, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30817172

RESUMEN

Culture of human endothelial cells for 10 d in real microgravity onboard the International Space Station modulated more than 1000 genes, some of which are involved in stress response. On Earth, 24 h after exposure to simulated microgravity, endothelial cells up-regulate heat shock protein (HSP) 70. To capture a broad view of endothelial stress response to gravitational unloading, we cultured primary human endothelial cells for 4 and 10 d in the rotating wall vessel, a U.S. National Aeronautics and Space Administration-developed surrogate system for benchtop microgravity research on Earth. We highlight the crucial role of the early increase of HSP70 because its silencing markedly impairs cell survival. Once HSP70 up-regulation fades away after 4 d of simulated microgravity, a complex and articulated increase of various stress proteins (sirtuin 2, paraoxonase 2, superoxide dismutase 2, p21, HSP27, and phosphorylated HSP27, all endowed with cytoprotective properties) occurs and counterbalances the up-regulation of the pro-oxidant thioredoxin interacting protein (TXNIP). Interestingly, TXNIP was the most overexpressed transcript in endothelial cells after spaceflight. We conclude that HSP70 up-regulation sustains the initial adaptive response of endothelial cells to mechanical unloading and drives them toward the acquisition of a novel phenotype that maintains cell viability and function through the sequential involvement of different stress proteins.-Cazzaniga, A., Locatelli, L., Castiglioni, S., Maier, J. A. M. The dynamic adaptation of primary human endothelial cells to simulated microgravity.


Asunto(s)
Células Endoteliales/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Simulación de Ingravidez , Ingravidez , Arildialquilfosfatasa/metabolismo , Proteínas Portadoras/metabolismo , Supervivencia Celular , Ensayo Cometa , Simulación por Computador , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Silenciador del Gen , Proteínas del Choque Térmico HSP72/metabolismo , Proteínas de Choque Térmico/metabolismo , Homeostasis , Células Endoteliales de la Vena Umbilical Humana , Humanos , Chaperonas Moleculares/metabolismo , Fosforilación , Sirtuina 2/metabolismo , Vuelo Espacial , Superóxido Dismutasa/metabolismo
7.
Int J Mol Sci ; 21(8)2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316573

RESUMEN

Type 1 Diabetes Mellitus (T1D) is associated with accelerated atherosclerosis that is responsible for high morbidity and mortality. Endothelial hyperpermeability, a feature of endothelial dysfunction, is an early step of atherogenesis since it favours intimal lipid uptake. Therefore, we tested endothelial leakage by loading the sera from T1D patients onto cultured human endothelial cells and found it increased by hyperglycaemic sera. These results were phenocopied in endothelial cells cultured in a medium containing high concentrations of glucose, which activates inducible nitric oxide synthase with a consequent increase of nitric oxide. Inhibition of the enzyme prevented high glucose-induced hyperpermeability, thus pointing to nitric oxide as the mediator involved in altering the endothelial barrier function. Since nitric oxide is much higher in sera from hyperglycaemic than normoglycaemic T1D patients, and the inhibition of inducible nitric oxide synthase prevents sera-dependent increased endothelial permeability, this enzyme might represent a promising biochemical marker to be monitored in T1D patients to predict alterations of the vascular wall, eventually promoting intimal lipid accumulation.


Asunto(s)
Diabetes Mellitus Tipo 1/sangre , Endotelio/metabolismo , Glucosa/efectos adversos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/sangre , Adolescente , Estudios de Casos y Controles , Células Cultivadas , Niño , Preescolar , Endotelio/citología , Activación Enzimática , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Permeabilidad , Adulto Joven
8.
Biochem Biophys Res Commun ; 513(1): 159-165, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30952425

RESUMEN

The magnesium transporters TRPM7 and MagT1 are overexpressed in osteoblastogenesis. We have shown that silencing either TRPM7 or MagT1 accelerates the osteogenic differentiation of human bone mesenchymal stem cells. Here we demonstrate that the simultaneous downregulation of TRPM7 and MagT1 inhibits cell growth and activates autophagy, which is required in the early phases of osteoblastogenesis. In TRPM7/MagT1 downregulating cells the expression of two transcription factors required for activating osteogenesis, i.e. RUNX2 and OSTERIX, is induced more than in the controls both in the presence and in the absence of osteogenic stimuli, while COL1A1 is upregulated in co-silencing cells as much as in the controls. This explains why we found no differences in calcium deposition. We conclude that one of the two transporters should be expressed to accelerate osteogenic differentiation.


Asunto(s)
Proteínas de Transporte de Catión/genética , Células Madre Mesenquimatosas/citología , Proteínas Serina-Treonina Quinasas/genética , Canales Catiónicos TRPM/genética , Adulto , Autofagia , Proteínas de Transporte de Catión/metabolismo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Regulación hacia Abajo , Humanos , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Canales Catiónicos TRPM/metabolismo
9.
Int J Mol Sci ; 20(2)2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30658432

RESUMEN

Magnesium (Mg) is crucial for bone health. Low concentrations of Mg inhibit the activity of osteoblasts while promoting that of osteoclasts, with the final result of inducing osteopenia. Conversely, little is known about the effects of high concentrations of extracellular Mg on osteoclasts and osteoblasts. Since the differentiation and activation of these cells is coordinated by vitamin D3 (VD3), we investigated the effects of high extracellular Mg, as well as its impact on VD3 activity, in these cells. U937 cells were induced to osteoclastic differentiation by VD3 in the presence of supra-physiological concentrations (>1 mM) of extracellular Mg. The effect of high Mg concentrations was also studied in human bone-marrow-derived mesenchymal stem cells (bMSCs) induced to differentiate into osteoblasts by VD3. We demonstrate that high extra-cellular Mg levels potentiate VD3-induced osteoclastic differentiation, while decreasing osteoblastogenesis. We hypothesize that Mg might reprogram VD3 activity on bone remodeling, causing an unbalanced activation of osteoclasts and osteoblasts.


Asunto(s)
Diferenciación Celular , Colecalciferol/metabolismo , Magnesio/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Osteoclastos/citología , Osteoclastos/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colecalciferol/farmacología , Perfilación de la Expresión Génica , Humanos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Células U937
10.
Molecules ; 25(1)2019 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-31905689

RESUMEN

N-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) seem to prevent endothelial dysfunction, a crucial step in atherogenesis, by modulating the levels of vasoactive molecules and by influencing Na,K-ATPase activity of vascular myocytes. The activity of endothelial Na,K-ATPase controls the ionic homeostasis of the neighboring cells, as well as cell function. However, controversy exists with respect to the vascular protective effect of EPA and DHA. We argue that this dispute might be due to the use of different concentrations of EPA and DHA in different studies. Therefore, this study was designed to define an optimal concentration of EPA and DHA to investigate endothelial function. For this purpose, human endothelial cells were exposed for 24 h to different concentrations of DHA or EPA (0-20 µM) to study membrane fluidity, peroxidation potential and Na,K-ATPase activity. EPA and DHA were linearly incorporated and this incorporation was mirrored by the linear increase of unsaturation index, membrane fluidity, and peroxidation potential. Na,K-ATPase activity peaked at 3.75 µM of EPA and DHA and then gradually decreased. It is noteworthy that DHA effects were always more pronounced than EPA. Concluding, low concentrations of EPA and DHA minimize peroxidation sensitivity and optimize Na,K-ATPase activity.


Asunto(s)
Aterosclerosis/enzimología , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/análogos & derivados , Células Endoteliales/enzimología , Fluidez de la Membrana/efectos de los fármacos , Aterosclerosis/patología , Aterosclerosis/prevención & control , Ácido Eicosapentaenoico/farmacología , Células Endoteliales/patología , Homeostasis/efectos de los fármacos , Humanos , ATPasa Intercambiadora de Sodio-Potasio
11.
Int J Mol Sci ; 19(5)2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29747379

RESUMEN

Magnesium plays a pivotal role in energy metabolism and in the control of cell growth. While magnesium deprivation clearly shapes the behavior of normal and neoplastic cells, little is known on the role of this element in cell differentiation. Here we show that magnesium deficiency increases the transcription of multipotency markers and tissue-specific transcription factors in human adipose-derived mesenchymal stem cells exposed to a mixture of natural molecules, i.e., hyaluronic, butyric and retinoid acids, which tunes differentiation. We also demonstrate that magnesium deficiency accelerates the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. We argue that magnesium deprivation generates a stressful condition that modulates stem cell plasticity and differentiation potential. These studies indicate that it is possible to remodel transcription in mesenchymal stem cells by lowering extracellular magnesium without the need for genetic manipulation, thus offering new hints for regenerative medicine applications.


Asunto(s)
Magnesio/metabolismo , Células Madre Mesenquimatosas/metabolismo , Transcripción Genética , Tejido Adiposo/citología , Adulto , Células de la Médula Ósea/citología , Ciclo Celular/genética , Diferenciación Celular/genética , Femenino , Regulación de la Expresión Génica , Humanos , Osteogénesis/genética , Especies Reactivas de Oxígeno/metabolismo
12.
Int J Mol Sci ; 18(12)2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29244717

RESUMEN

Since interferon-γ (IFN-γ) tunes both innate and adaptive immune systems, it was expected to enter clinical practice as an immunomodulatory drug. However, the use of IFN-γ has been limited by its dose-dependent side effects. Low-dose medicine, which is emerging as a novel strategy to treat diseases, might circumvent this restriction. Several clinical studies have proved the efficacy of therapies with a low dose of cytokines subjected to kinetic activation, while no in vitro data are available. To fill this gap, we investigated whether low concentrations, in the femtogram range, of kinetically activated IFN-γ modulate the behavior of Jurkat cells, a widely used experimental model that has importantly contributed to the present knowledge about T cell signaling. In parallel, IFN-γ in the nanogram range was used and shown to activate Signal transducer and activator of transcription (STAT)-1 and then to induce suppressor of cytokine signaling-1 (SOCS-1), which inhibits downstream signaling. When added together, femtograms of IFN-γ interfere with the transduction cascade activated by nanograms of IFN-γ by prolonging the activation of STAT-1 through the downregulation of SOCS-1. We conclude that femtograms of IFN-γ exert an immunomodulatory action in Jurkat cells.


Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Factores Inmunológicos/administración & dosificación , Linfocitos T/efectos de los fármacos , Inmunidad Adaptativa/genética , Relación Dosis-Respuesta a Droga , Humanos , Inmunidad Innata/genética , Inmunomodulación/efectos de los fármacos , Interferón gamma/administración & dosificación , Células Jurkat/efectos de los fármacos , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/inmunología , Transducción de Señal/efectos de los fármacos , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/inmunología , Linfocitos T/inmunología
13.
Biochem Biophys Res Commun ; 473(1): 181-186, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27005819

RESUMEN

Bone loss is a well known early event in astronauts and represents one of the major obstacle to space exploration. While an imbalance between osteoblast and osteoclast activity has been described, less is known about the behavior of bone mesenchymal stem cells in microgravity. We simulated microgravity using the Random Positioning Machine and found that mesenchymal stem cells respond to gravitational unloading by upregulating HSP60, HSP70, cyclooxygenase 2 and superoxyde dismutase 2. Such an adaptive response might be involved in inducing the overexpression of some osteogenic transcripts, even though the threshold to induce the formation of bone crystal is not achieved. Indeed, only the addition of an osteogenic cocktail activates the full differentiation process both in simulated microgravity and under static 1G-conditions. We conclude that simulated microgravity alone reprograms bone mesenchymal stem cells towards an osteogenic phenotype which results in complete differentiation only after exposure to a specific stimulus.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Mesenquimatosas/citología , Simulación de Ingravidez , Medicina Aeroespacial , Huesos/fisiología , Células Cultivadas , Chaperonina 60/metabolismo , Medios de Cultivo/química , Ciclooxigenasa 2/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Masculino , Proteínas Mitocondriales/metabolismo , Osteogénesis , Reacción en Cadena en Tiempo Real de la Polimerasa , Estrés Fisiológico , Superóxido Dismutasa/metabolismo , Ingravidez
14.
Br J Nutr ; 110(4): 587-98, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23332102

RESUMEN

Flavanones are found specifically and abundantly in citrus fruits. Their beneficial effect on vascular function is well documented. However, little is known about their cellular and molecular mechanisms of action in vascular cells. The goal of the present study was to identify the impact of flavanone metabolites on endothelial cells and decipher the underlying molecular mechanisms of action. We investigated the impact of naringenin and hesperetin metabolites at 0·5, 2 and 10 µM on monocyte adhesion to TNF-α-activated human umbilical vein endothelial cells (HUVEC) and on gene expression. Except hesperetin-7-glucuronide and naringenin-7-glucuronide (N7G), when present at 2 µM, flavanone metabolites (hesperetin-3'-sulphate, hesperetin-3'-glucuronide and naringenin-4'-glucuronide (N4'G)) significantly attenuated monocyte adhesion to TNF-α-activated HUVEC. Exposure of both monocytes and HUVEC to N4'G and N7G at 2 µM resulted in a higher inhibitory effect on monocyte adhesion. Gene expression analysis, using TaqMan Low-Density Array, revealed that flavanone metabolites modulated the expression of genes involved in atherogenesis, such as those involved in inflammation, cell adhesion and cytoskeletal organisation. In conclusion, physiologically relevant concentrations of flavanone metabolites reduce monocyte adhesion to TNF-α-stimulated endothelial cells by affecting the expression of related genes. This provides a potential explanation for the vasculoprotective effects of flavanones.


Asunto(s)
Aterosclerosis/metabolismo , Adhesión Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Flavanonas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Monocitos/efectos de los fármacos , Flavanonas/farmacología , Perfilación de la Expresión Génica , Glucurónidos/farmacología , Hesperidina/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación , Monocitos/citología , Sulfatos/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
15.
Angiogenesis ; 15(1): 47-57, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22183257

RESUMEN

Evidence has accumulated to suggest that magnesium might play a role in controlling angiogenesis. Since microvascular endothelial cells are protagonists in this process, we investigated the behavior of these cells cultured in low extracellular magnesium or silenced for its transporter Transient Receptor Potential Melastatin (TRPM)7, essential for cellular magnesium homeostasis. In particular, we focused on some crucial steps of the angiogenic process, i.e. proliferation, migration, protease production and organization in tridimensional structures. Silencing TRPM7 mimics the effects of low extracellular magnesium on human microvascular endothelial cells (HMEC). Indeed, while no effects were observed on the production of metalloproteases and on tridimensional organization on matrigel, both magnesium deficiency and silencing of TRPM7 impair cell migration and inhibit growth by arresting the cells in the G0/G1 and G2/M phases of the cell cycle. Since low extracellular magnesium markedly decreases TRPM7 in HMEC, we suggest that TRPM7 downregulation might mediate low magnesium-induced inhibition of cell growth and migration. Human endothelial cells from the umbilical vein are growth inhibited by low magnesium and growth stimulated after TRPM7 silencing. An impairment of ERK phosphorylation in HMEC silencing TRPM7 is responsible, in part, for the different proliferative behavior of these two cell types. We broadened our studies also to endothelial colony-forming cells and found that they are sensitive to fluctuations of the concentrations of extracellular magnesium, while their proliferation rate is not modulated by TRPM7 silencing. Our results point to magnesium and TRPM7 as a modulators of the angiogenic phenotype of microvascular endothelial cells.


Asunto(s)
Células Endoteliales/metabolismo , Silenciador del Gen , Deficiencia de Magnesio/metabolismo , Microvasos/patología , Canales Catiónicos TRPM/genética , Antioxidantes/farmacología , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Colágeno/farmacología , Ensayo de Unidades Formadoras de Colonias , Medios de Cultivo/farmacología , Regulación hacia Abajo/efectos de los fármacos , Combinación de Medicamentos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Células Endoteliales/patología , Silenciador del Gen/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Laminina/farmacología , Magnesio/farmacología , Deficiencia de Magnesio/patología , Metaloproteinasas de la Matriz/metabolismo , Proteínas Serina-Treonina Quinasas , Proteoglicanos/farmacología , Canales Catiónicos TRPM/metabolismo
16.
Biochem Biophys Res Commun ; 421(2): 380-3, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22510412

RESUMEN

HD-PTP (PTPN23) is a non-transmembrane protein tyrosine phosphatase which contributes to the signal transduction pathways involved in the regulation of cell migration and invasion. We here demonstrate in T24 bladder carcinoma cells that HD-PTP undergoes calcium-dependent degradation which can be prevented by specific calpain inhibitors. In addition, treatment of the cells with the calpain inhibitor calpeptin results in the redistribution of endogenous HD-PTP to the periphery of the cells. Since (i) calpains are overexpressed in some tumors and (ii) the downregulation of HD-PTP enhances cell migration and invasion, we propose that HD-PTP degradation by calpains might result in the acquisition of a more aggressive phenotype in neoplastic cells.


Asunto(s)
Calcio/metabolismo , Calpaína/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteolisis , Calpaína/antagonistas & inhibidores , Línea Celular Tumoral , Movimiento Celular , Inhibidores de Cisteína Proteinasa/farmacología , Dipéptidos/farmacología , Humanos , Invasividad Neoplásica
17.
Clin Sci (Lond) ; 122(9): 397-407, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22248353

RESUMEN

There is no doubt that the functional and structural integrity of the endothelium is critical in maintaining vascular homoeostasis and in preventing atherosclerosis. In the light of epidemiological and experimental studies, magnesium deficiency is emerging as an inducer of endothelial dysfunction. In particular, data on the effects of low extracellular magnesium on cultured endothelial cells reinforce the idea that correcting magnesium homoeostasis might be a helpful and inexpensive intervention to prevent and treat endothelial dysfunction and, consequently, atherosclerosis.


Asunto(s)
Aterosclerosis/etiología , Aterosclerosis/fisiopatología , Células Endoteliales/fisiología , Deficiencia de Magnesio/complicaciones , Magnesio/fisiología , Animales , Aterosclerosis/tratamiento farmacológico , Permeabilidad Capilar , Células Endoteliales/efectos de los fármacos , Humanos , Interleucina-1alfa/fisiología , Magnesio/farmacología , Deficiencia de Magnesio/tratamiento farmacológico , Deficiencia de Magnesio/fisiopatología , Modelos Cardiovasculares , FN-kappa B/fisiología , Estrés Oxidativo , Péptido Hidrolasas/biosíntesis , Trombosis/etiología , Trombosis/fisiopatología
18.
Front Bioeng Biotechnol ; 10: 862059, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35480977

RESUMEN

Life evolved on this planet under the pull of gravity, shielded from radiation by the magnetosphere and shaped by circadian rhythms due to Earth's rotation on its axis. Once living beings leave such a protective environment, adaptive responses are activated to grant survival. In view of long manned mission out of Earth's orbit, it is relevant to understand how humans adapt to space and if the responses activated might reveal detrimental in the long run. Here we review present knowledge about the effects on the vessels of various extraterrestrial factors on humans as well as in vivo and in vitro experimental models. It emerges that the vasculature activates complex adaptive responses finalized to supply oxygen and nutrients to all the tissues and to remove metabolic waste and carbon dioxide. Most studies point to oxidative stress and mitochondrial dysfunction as mediators of vascular alterations in space. Unraveling the cellular and molecular mechanisms involved in these adaptive processes might offer hints to design proper and personalized countermeasures to predict a safe future in space.

19.
Biochim Biophys Acta ; 1802(11): 952-8, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20600865

RESUMEN

Phenotypic modulation of endothelium to a dysfunctional state contributes to the pathogenesis of atherosclerosis, partly through the activation of the transcription factor NFkB. Several data indicate that magnesium deficiency caused by prolonged insufficient intake and/or defects in its homeostasis may be a missing link between diverse cardiovascular risk factors and atherosclerosis. Here we report that endothelial cells cultured in low magnesium rapidly activate NFkB, an event which is prevented by exposure to the anti-oxidant trolox. It is well known that NFkB activation correlates with marked alterations of the cytokine network. In the present study, we show that exposure of endothelial cells to low magnesium increases the secretion of RANTES, interleukin 8 and platelet derived growth factor BB, all important players in atherogenesis. Moreover, we describe the increased secretion of matrix metalloprotease-2 and -9 and of their inhibitor TIMP-2. Interestingly, by zymography we show that metalloprotease activity predominated over the inhibitory effect of TIMP-2. These results indicate that low magnesium promotes endothelial dysfunction by inducing pro-inflammatory and pro-atherogenic events.


Asunto(s)
Citocinas/metabolismo , Células Endoteliales/efectos de los fármacos , Magnesio/farmacología , FN-kappa B/metabolismo , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Becaplermina , Western Blotting , Células Cultivadas , Quimiocina CCL5/metabolismo , Relación Dosis-Respuesta a Droga , Células Endoteliales/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Magnesio/metabolismo , Deficiencia de Magnesio/complicaciones , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogénicas c-sis , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
20.
Front Cell Dev Biol ; 9: 733573, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568340

RESUMEN

Mechanical cues contribute to the maintenance of a healthy endothelium, which is essential for vascular integrity. Indeed endothelial cells are mechanosensors that integrate the forces in the form of biochemical signals. The cytoskeleton is fundamental in sensing mechanical stimuli and activating specific signaling pathways. Because the cytoskeleton is very rapidly remodeled in endothelial cells exposed to microgravity, we investigated whether the disruption of actin polymerization by cytochalasin D in 1g condition triggers and orchestrates responses similar to those occurring in micro- and macro-vascular endothelial cells upon gravitational unloading. We focused our attention on the effect of simulated microgravity on stress proteins and transient receptor potential melastatin 7 (TRPM7), a cation channel that acts as a mechanosensor and modulates endothelial cell proliferation and stress response. Simulated microgravity downregulates TRPM7 in both cell types. However, 24 h of treatment with cytochalasin D decreases the amounts of TRPM7 only in macrovascular endothelial cells, suggesting that the regulation and the role of TRPM7 in microvascular cells are more complex than expected. The 24 h culture in the presence of cytochalasin D mimics the effect of simulated microgravity in modulating stress response in micro- and macro-vascular endothelial cells. We conclude that cytoskeletal disruption might mediate some effects of microgravity in endothelial cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA