Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(35): e2400119, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38676344

RESUMEN

Concomitant achievement of all three performance pillars of a supercapacitor device, namely gravimetric, areal, and volumetric capacitance is a grand challenge. Nevertheless, its fulfilment is indispensable for commercial usage. Although, high compactness is the fundamental requirement to achieve high volumetric performance, it severely affects ion transportation in thick electrodes. Such trade-off makes it extremely challenging to realize very high areal and volumetric performance simultaneously. Here, a collapsed hydrogel strategy is introduced to develop MXene/cellulose nanofiber (CNF) based densified electrodes that offer excellent ion transportation despite a massive increase in areal mass loading (>70 mg cm-2). Quasi-oriented MXene/CNF (MXCF) hydrogels are produced through an electric field-guided co-assembly technique. Ambient dehydration of these hydrogels incorporates numerous pores in the resultant compact electrodes due to crumpling of the MXene sheets, while CNF ensures connectivity among the locally blocked pores in different length scales. The resultant collapsed MXCF densified electrode shows a remarkably high areal capacitance of 16 F cm-2 while simultaneously displaying a high volumetric capacitance of 849.8 F cm-3 at an ultrahigh mass loading of up to 73.4 mg cm-2. The universality of strategy, including the co-assembly of hydrogel and its collapse, is further demonstrated to develop high-performance asymmetric and wearable devices.

2.
Small ; 18(19): e2200622, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35403815

RESUMEN

High overpotentials required to cross the energy barriers of both hydrogen and oxygen evolution reactions (HER and OER) limit the overall efficiency of hydrogen production by electrolysis of water. The rational design of heterostructures and anchoring single-atom catalysts (SAC) are the two successful strategies to lower these overpotentials, but realization of such advanced nanostructures with adequate electronic control is challenging. Here, the heterostructure of edge-oriented molybdenum selenide (MoSe2 ) and nickel-cobalt-selenide (NiCo2 Se4 ) realized through selenization of mixed metal oxide/hydroxide is presented. The as-developed sheet-on-sheet heterostructure shows excellent HER performance, requiring an overpotential of 89 mV to get a current density 10 mA cm-2 and a Tafel slope of 65 mV dec-1 . Further, resultant MoSe2 @NiCo2 Se4 is photochemically decorated with single-atom iridium, which on electrochemical surface reconstruction displays outstanding OER activity, requiring only 200 and 313 mV overpotentials for 10 and 500 mA cm-2 current densities, respectively. A full cell electrolyzer comprising of MoSe2 @NiCo2 Se4 as cathode and its SAC-Ir decorated counterpart as anode requires only 1.51 V to attain 10 mA cm-2 current density. Density functional theory calculation reveals the importance of rational heterostructure design and synergistic electronic coupling of single atom iridium in HER and OER processes, respectively.

4.
Nanotechnology ; 27(26): 265601, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27188388

RESUMEN

Multistage field emitters consisting of organic/inorganic hybrid nanostructures with branched geometry are designed via a two-step protocol: a simple wet chemical method followed by a vapor-solid-phase technique. (Cu/Ag)TCNQ (copper/silver-7,7,8,8-tetracyanoquinodimethane) nanowires (NWs) were grown hierarchically on zinc oxide (ZnO) nanorods (NRs) to form ZnO-(Cu/Ag)TCNQ heterostructure assemblies. By monitoring the metallic Cu and Ag coating thickness on ZnO NRs, precise control over the morphology and orientations of the secondary organic NWs is achieved. In-depth analysis of electron field emission (FE) behavior of the ZnO-(Cu/Ag)TCNQ-based hierarchy suggests highest emission performance with low turn-on as well as threshold fields of 1.15 and 3.75 V µm(-1) respectively from the morphology-optimized hierarchy. Beneficial orientation of the branched organic NWs ensures sequential electric field enhancement in the consecutive stem and branches whereas its low work function eases electron emission; these aspects combined together render an overall enhancement in the emission behavior of the hybrid system. As compared to individual building units, the heterostructures show improved field electron emission. Additionally, successful construction of this novel hybrid over a fabric platform displays great potential in opening up new pathways in the highly-anticipated field of flexible electronics.

5.
Nano Lett ; 14(3): 1228-33, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24502837

RESUMEN

Cost effective hydrogen evolution reaction (HER) catalyst without using precious metallic elements is a crucial demand for environment-benign energy production. Molybdenum sulfide is one of the promising candidates for such purpose, particularly in acidic condition, but its catalytic performance is inherently limited by the sparse catalytic edge sites and poor electrical conductivity. We report synthesis and HER catalysis of hybrid catalysts composed of amorphous molybdenum sulfide (MoSx) layer directly bound at vertical N-doped carbon nanotube (NCNT) forest surface. Owing to the high wettability of N-doped graphitic surface and electrostatic attraction between thiomolybdate precursor anion and N-doped sites, ∼2 nm scale thick amorphous MoSx layers are specifically deposited at NCNT surface under low-temperature wet chemical process. The synergistic effect from the dense catalytic sites at amorphous MoSx surface and fluent charge transport along NCNT forest attains the excellent HER catalysis with onset overpotential as low as ∼75 mV and small potential of 110 mV for 10 mA/cm(2) current density, which is the highest HER activity of molybdenum sulfide-based catalyst ever reported thus far.

6.
Nanotechnology ; 25(1): 014008, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24334527

RESUMEN

Directed self-assembly of a block copolymer is successfully employed to fabricate device-oriented graphene nanostructures from CVD grown graphene. We implemented mussel-inspired polydopamine adhesive in conjunction with the graphoepitaxy principle to tailor graphene nanoribbon arrays and a graphene nanomesh located between metal electrodes. Polydopamine adhesive was utilized for facile and damage-free surface treatment to complement the low surface energy of pristine graphene. Our process minimizes the damage to the ideal graphitic structures and electrical properties of graphene during the nanopatterning process. Multi-channel graphene nanoribbon arrays and a graphene nanomesh were successfully fabricated between metal electrodes.

7.
ChemSusChem ; : e202400970, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39113614

RESUMEN

Biomass-derived carbon materials are gaining attention for their environmental and economic advantages in waste resource recovery, particularly for their potential as high-energy materials for alkali metal ion storage. However, ensuring the reliability of secondary battery anodes remains a significant hurdle. Here, we report Areca Catechu sheath-inner part derived carbon (referred to as ASIC) as a high-performance anode for both rechargeable Li-ion (LIBs) and Na-ion batteries (SIBs). We explore the microstructure and electrochemical performance of ASIC materials synthesized at various pyrolysis temperatures ranging from 700 to 1400 °C. ASIC-9, pyrolyzed at 900 °C, exhibits multilayer stacked sheets with the highest specific surface area, and the least lateral size and stacking height. ASIC-14, pyrolyzed at 1400 °C, demonstrates the most ordered carbon structure with the least defect concentration and the highest stacking height and an increased lateral size. ASIC-9 achieves the highest capacities (676 mAh/g at 0.134C) and rate performance (94 mAh/g at 13.4C) for hosting Li+ ions, while ASIC-14 exhibits superior electrochemical performance for hosting Na+ ions, maintaining a high specific capacity after 300 cycles with over 99.5% Coulombic efficiency. This comprehensive understanding of structure-property relationships paves the way for the practical utilization of biomass-derived carbon in various battery applications.

8.
Nanotechnology ; 24(46): 465601, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24149237

RESUMEN

Organic charge transfer (CT) complexes initiated a growing interest in modern electronic devices owing to their easy processability and unique characteristics. In this work, three-dimensional field emitters comprising metal-organic charge transfer complex nanostructures of AgTCNQ and CuTCNQ (TCNQ, 7,7,8,8-tetracyanoquinodimethane) over flexible fabric substrate are realized. Deliberate control over the reaction parameter during organic solid phase reaction leads to modification in structural parameters of the nanowires (i.e. length, diameter) as well as their arrangement atop the carbon fibers. The optimized arrays of AgTCNQ and CuTCNQ nanowires exhibit excellent field electron emission performance with very low turn-on (1.72 and 2.56 V µm(-1)) and threshold fields (4.21 and 6.33 V µm(-1)) respectively, which are comparable to those of the best organic field emitters reported to date. The underlying conducting carbon cloth with special woven-like geometry not only offers a flexible platform for nanowire growth, but also provides an additional field enhancement to ease the electron emission.

9.
Nanotechnology ; 24(12): 125702, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23459239

RESUMEN

Large scale high yield cadmium sulfide (CdS) nanowires with uniform diameter were synthesized using a rapid and simple solvo-chemical and hydrothermal route assisted by the surfactant cetyltrimethylammonium bromide (CTAB). Unique CdS nanowires of different morphologies could be selectively produced by only varying the concentration of CTAB in the reaction system with cadmium acetate, sulfur powder and ethylenediamine. We obtained CdS nanowires with diameters of 64-65 nm and lengths of up to several micrometers. A comparative study of the optical properties of ferroelectric liquid crystal (FLC) Felix-017/100 doped with 1% of CdS nanowires was performed. Response times of the order of from 160 to 180 µs, rotational viscosities of the order of from 5000 to 3000 mN s m(-2) and polarizations of the order of from 10 to 70 nC cm(-2) were measured. We also observed an anti-ferroelectric to ferroelectric transition for CdS doped FLC instead of the ferroelectric to paraelectric transition for pure FLC.

10.
Nanotechnology ; 22(50): 505703, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22108501

RESUMEN

A multistage field emitter based on graphene-linked ZnO nanowire array is realized by means of spin-coating a graphene dispersion (reduced graphene oxide) over a nanostructured platform followed by plasma modification. Spin-coating leads to interlinking of graphene sheets between the neighboring nanowires whereas plasma etching in the subsequent step generates numerous ultra-sharp graphene edges at the nanowire tips. The inherent tendency of graphene to lay flat over a plane substrate can easily be bypassed through the currently presented nanostructure platform based technique. The turn-on and threshold field significantly downshifted compared to the individual components in the cascade emitter. Through the facile electron transfer from nanowires to graphene due to band bending at the ZnO-graphene interface together with multistage geometrical field enhancement at both the nanowire and graphene edges remain behind this enriched field emission from the composite cold cathode. This strategy will open up a new direction to integrate the functionalities of both the graphene array and several other inorganic nanostructure array for practical electronic devices.

11.
J Nanosci Nanotechnol ; 10(7): 4341-7, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21128422

RESUMEN

Three dimensional (3-D) assemblies of ZnO nanoneedles have been synthesized on silicon substrate by a unique chemical process. Each nanoneedle in the assemblies was hexagonal faceted having [001] growth direction and tip diameter approximately 20 nm. The growth of 3-D assemblies was governed by the initial nuclei formation, followed by their aggregation and subsequently nanoneedle formation from each nucleus. Room temperature photoluminescence (PL) spectrum of the assemblies showed two prominent peaks, one narrow peak in the ultraviolet region (385 nm) and another broad peak in the visible region (440 nm-600 nm). The 3-D assemblies of ZnO nanoneedles showed very good field emission property with turn-on voltages 390 V, 530 V and 680 V for the anode-emitter distances of 100 microm, 200 microm and 300 microm respectively. The turn-on voltages showed a linear relationship with the anode-emitter distance. Field enhancement factor (beta) for the nanostructure was calculated to be 2873. The high beta value and the low turn-on field are attributed to the sharp needle like structure and their interesting three dimensional assemblies.

12.
ACS Appl Mater Interfaces ; 8(3): 1571-7, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26766495

RESUMEN

Electrochemical oxygen redox reactions are the crucial elements for energy conversion and storage including fuel cells and metal air batteries. Despite tremendous research efforts, developing high-efficient, low-cost, and durable bifunctional oxygen catalysts remains a major challenge. We report a new class of hybrid material consisting of subnanometer thick amorphous cobalt hydroxide anchored on NCNT as a durable ORR/OER bifunctional catalyst. Although amorphous cobalt species-based catalysts are known as good OER catalysts, hybridizing with NCNT successfully enhanced ORR activity by promoting a 4e reduction pathway. Abundant charge carriers in amorphous cobalt hydroxide are found to trigger the superior OER activity with high current density and low Tafel slope as low as 36 mV/decade. A remarkably high OER turnover frequency (TOF) of 2.3 s(-1) at an overpotential of 300 mV was obtained, one of the highest values reported so far. Moreover, the catalytic activity was maintained over 120 h of cycling. The unique subnanometer scale morphology of amorphous hydroxide cobalt species along with intimate cobalt species-NCNT interaction minimizes the deactivation of catalyst during prolonged repeated cycles.

13.
Nat Commun ; 7: 10364, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26796993

RESUMEN

Atomic level engineering of graphene-based materials is in high demand to enable customize structures and properties for different applications. Unzipping of the graphene plane is a potential means to this end, but uncontrollable damage of the two-dimensional crystalline framework during harsh unzipping reaction has remained a key challenge. Here we present heteroatom dopant-specific unzipping of carbon nanotubes as a reliable and controllable route to customized intact crystalline graphene-based nanostructures. Substitutional pyridinic nitrogen dopant sites at carbon nanotubes can selectively initiate the unzipping of graphene side walls at a relatively low electrochemical potential (0.6 V). The resultant nanostructures consisting of unzipped graphene nanoribbons wrapping around carbon nanotube cores maintain the intact two-dimensional crystallinity with well-defined atomic configuration at the unzipped edges. Large surface area and robust electrical connectivity of the synergistic nanostructure demonstrate ultrahigh-power supercapacitor performance, which can serve for AC filtering with the record high rate capability of -85° of phase angle at 120 Hz.

14.
ACS Appl Mater Interfaces ; 7(46): 25898-905, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26524473

RESUMEN

A scalable and controllable nanoscale perforation method for graphene is developed on the basis of the two-step thermal activation of a graphene aerogel. Different resistance to the thermal oxidation between graphitic and defective domains in the weakly reduced graphene oxide is exploited for the self-limiting nanoscale perforation in the graphene basal plane via selective thermal degradation of the defective domains. The resultant nanoporous graphene with a narrow pore-size distribution addresses the long-standing challenge for the high-level doping of graphene with lattice-mismatched large-size heteroatoms (S and P). Noticeably, this novel heteroatom doping strategy is demonstrated to be highly effective for oxygen reduction reaction (ORR) catalysis. Not only the higher level of heteroatom doping but also favorable spin and charge redistribution around the pore edges leads to a strong ORR activity as supported by density functional theory calculations.

15.
ACS Nano ; 9(9): 9148-57, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26267150

RESUMEN

Energy-efficient CO2 capture is a stringent demand for green and sustainable energy supply. Strong adsorption is desirable for high capacity and selective capture at ambient conditions but unfavorable for regeneration of adsorbents by a simple pressure control process. Here we present highly regenerative and selective CO2 capture by carbon nitride functionalized porous reduced graphene oxide aerogel surface. The resultant structure demonstrates large CO2 adsorption capacity at ambient conditions (0.43 mmol·g(-1)) and high CO2 selectivity against N2 yet retains regenerability to desorb 98% CO2 by simple pressure swing. First-principles thermodynamics calculations revealed that microporous edges of graphitic carbon nitride offer the optimal CO2 adsorption by induced dipole interaction and allows excellent CO2 selectivity as well as facile regenerability. This work identifies a customized route to reversible gas capture using metal-free, two-dimensional carbonaceous materials, which can be extended to other useful applications.

16.
Adv Mater ; 26(1): 40-66, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24123343

RESUMEN

Outstanding pristine properties of carbon nanotubes and graphene have limited the scope for real-life applications without precise controllability of the material structures and properties. This invited article to celebrate the 25th anniversary of Advanced Materials reviews the current research status in the chemical modification/doping of carbon nanotubes and graphene and their relevant applications with optimized structures and properties. A broad aspect of specific correlations between chemical modification/doping schemes of the graphitic carbons with their novel tunable material properties is summarized. An overview of the practical benefits from chemical modification/doping, including the controllability of electronic energy level, charge carrier density, surface energy and surface reactivity for diverse advanced applications is presented, namely flexible electronics/optoelectronics, energy conversion/storage, nanocomposites, and environmental remediation, with a particular emphasis on their optimized interfacial structures and properties. Future research direction is also proposed to surpass existing technological bottlenecks and realize idealized graphitic carbon applications.

17.
ACS Nano ; 8(9): 9073-80, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25145457

RESUMEN

Graphene oxide (GO) is aqueous-dispersible oxygenated graphene, which shows colloidal discotic liquid crystallinity. Many properties of GO-based materials, including electrical conductivity and mechanical properties, are limited by the small flake size of GO. Unfortunately, typical sonochemical exfoliation of GO from graphite generally leads to a broad size and shape distribution. Here, we introduce a facile size selection of large-size GO exploiting liquid crystallinity and investigate the size-dependent N-doping and oxygen reduction catalysis. In the biphasic GO dispersion where both isotropic and liquid crystalline phases are equilibrated, large-size GO flakes (>20 µm) are spontaneously concentrated within the liquid crystalline phase. N-Doping and reduction of the size-selected GO exhibit that N-dopant type is highly dependent on GO flake size. Large-size GO demonstrates quaternary dominant N-doping and the lowest onset potential (-0.08 V) for oxygen reduction catalysis, signifying that quaternary N-dopants serve as principal catalytic sites in N-doped graphene.

18.
Chem Commun (Camb) ; 50(52): 6818-30, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24710592

RESUMEN

Substitutional heteroatom doping is a promising route to modulate the outstanding material properties of carbon nanotubes and graphene for customized applications. Recently, (nitrogen-) N-doping has been introduced to ensure tunable work-function, enhanced n-type carrier concentration, diminished surface energy, and manageable polarization. Along with the promising assessment of N-doping effects, research on the N-doped carbon based composite structures is emerging for the synergistic integration with various functional materials. This invited feature article reviews the current research progress, emerging trends, and opening opportunities in N-doped carbon based composite structures. Underlying basic principles are introduced for the effective modulation of material properties of graphitic carbons by N-doping. Composite structures of N-doped graphitic carbons with various functional materials, including (i) polymers, (ii) transition metals, (iii) metal oxides, nitrides, sulphides, and (iv) semiconducting quantum dots are highlighted. Practical benefits of the synergistic composite structures are investigated in energy and catalytic applications, such as organic photovoltaics, photo/electro-catalysts, lithium ion batteries and supercapacitors, with a particular emphasis on the optimized interfacial structures and properties.

19.
ACS Nano ; 8(1): 650-6, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24350996

RESUMEN

Graphene offers great promise to complement the inherent limitations of silicon electronics. To date, considerable research efforts have been devoted to complementary p- and n-type doping of graphene as a fundamental requirement for graphene-based electronics. Unfortunately, previous efforts suffer from undesired defect formation, poor controllability of doping level, and subtle environmental sensitivity. Here we present that graphene can be complementary p- and n-doped by simple polymer coating with different dipolar characteristics. Significantly, spontaneous vertical ordering of dipolar pyridine side groups of poly(4-vinylpyridine) at graphene surface can stabilize n-type doping at room-temperature ambient condition. The dipole field also enhances and balances the charge mobility by screening the impurity charge effect from the bottom substrate. We successfully demonstrate ambient stable inverters by integrating p- and n-type graphene transistors, which demonstrated clear voltage inversion with a gain of 0.17 at a 3.3 V input voltage. This straightforward polymer doping offers diverse opportunities for graphene-based electronics, including logic circuits, particularly in mechanically flexible form.

20.
Nanoscale ; 3(10): 4135-41, 2011 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21850356

RESUMEN

A three dimensional field emitter comprising hierarchical nanostructures of graphene over flexible fabric substrate is presented. The nanostructuring is realized through plasma treatment of graphene, coaxially deposited over individual carbon fiber by means of simple aqueous phase electrophoretic deposition technique. Hierarchical graphene nanocone, acting as a cold electron emitter, exhibits outstanding electron emission performance with a turn-on field as low as 0.41 V µm(-1) and a threshold field down to 0.81 V µm(-1). Electric field modification around the special woven like geometry of the underlying base fabric substrate serves as the booster to the nanostructured graphene related field amplification at the electron emission site. Superb robustness in the emission stability can be attributed to suppressed joule heating on behalf of higher inborn accessible surface area of graphene nanocone as well as excellent electrical and thermal conductivity of both the graphene and carbon fabrics. Superior flexibility of this high-performance graphene based emitter ensures their potential use in completely foldable and wearable field emission devices.


Asunto(s)
Carbono/química , Grafito/química , Nanoestructuras/química , Fibra de Carbono , Conductividad Eléctrica , Electrones , Nanoestructuras/ultraestructura , Propiedades de Superficie , Conductividad Térmica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA