RESUMEN
The direct utilization of carbon dioxide as an ideal one-carbon source in value-added chemical synthesis has garnered significant attention from the standpoint of global sustainability. In this regard, the photo/electrochemical reduction of CO2 into useful fuels and chemical feedstocks could offer a great promise for the transition to a carbon-neutral economy. However, challenges in product selectivity continue to limit the practical application of these systems. A robust and general method for the conversion of CO2 to the polarity-reversed carbon dioxide radical anion, a C1 synthon, is critical for the successful valorization of CO2 to selective carboxylation reactions. We demonstrate herein a hydride and hydrogen atom transfer synergy driven general catalytic platform involving CO2â¢- for highly selective anti-Markovnikov hydrocarboxylation of alkenes via triple photoredox, hydride, and hydrogen atom transfer catalysis. Mechanistic studies suggest that the synergistic operation of the triple catalytic cycle ensures a low-steady-state concentration of CO2â¢- in the reaction medium. This method using a renewable light energy source is mild, robust, selective, and capable of accommodating a wide range of activated and unactivated alkenes. The highly selective nature of the transformation has been revealed through the synthesis of hydrocarboxylic acids from the substrates bearing a hydrogen atom available for intramolecular 1,n-HAT process as well as diastereoselective synthesis. This technology represents a general strategy for the merger of in situ formate generation with a synergistic photoredox and HAA catalytic cycle to provide CO2â¢- for selective chemical transformations.
RESUMEN
Copper nanoclusters (Cu NCs) characterized by their well-defined electronic and optical properties are an ideal platform for organic photocatalysis and exploring atomic-level behaviors. However, their potential as greener, efficient catalysts for challenging reactions like decarboxylative oxygenation under mild conditions remains unexplored. Herein, we present Cu13(Nap)3(PPh3)7H10 (hereafter Cu13Nap), protected by 1-naphthalene thiolate (Nap), which performs well in decarboxylative oxidation (90% yield) under photochemical conditions. In comparison, the isostructural Cu13(DCBT)3(PPh3)7H10 (hereafter Cu13DCBT), stabilized by 2,4-dichlorobenzenethiolate (DCBT), yields only 28%, and other previously reported Cu NCs (Cu28, Cu29, Cu45, Cu57, and Cu61) yield in the range of 6-18%. The introduction of naphthalene thiolate to the surface of Cu13 NCs influences their electronic structure and charge transfer in the ligand shell, enhancing visible light absorption and catalytic performance. Density functional theory (DFT) and experimental evidence suggest that the reaction proceeds primarily through an energy transfer mechanism. The energy transfer pathway is uncommon in the context of previous reports for decarboxylative oxidation reactions. Our findings suggest that strategically manipulating ligands holds significant potential for creating composite active sites on atomically precise copper NCs, resulting in enhanced catalytic efficacy and selectivity across various challenging reactions.
RESUMEN
The self-assembled resorcinarene capsule C6 shows remarkable photoacidity upon light irradiation, which is here exploited to catalyze olefin hydroarylation reactions in confined space. An experimental pKa* value range of -3.3--2.8 was estimated for the photo-excited hexameric capsule C6*, and consequently an increase in acidity of 8.8â log units was observed with respect to its ground state (pKa=5.5-6.0). This makes the hexameric capsule the first example of a self-assembled supramolecular photoacid. The photoacid C6* can catalyze hydroarylation reaction of olefins with aromatic substrates inside its cavity, while no reaction occurred between them in the absence of irradiation and/or capsule. DFT calculations corroborated a mechanism in which the photoacidity of C6* plays a crucial role in the protonation step of the aromatic substrate. A further proton transfer to olefin with a concomitant C-C bond formation and a final deprotonation step lead to product releasing.
RESUMEN
The mechanism of visible light-driven Ni-C(aryl) bond homolysis in (2,2'-bipyridine)NiII(aryl)(halide) complexes, which play a crucial role in metallaphotoredox catalysis for cross-coupling reactions, has been well studied. Differently, the theoretical understanding of Ni-halide bond homolysis remains limited. In this study, we introduce a novel electronic structural framework to elucidate the mechanisms underlying photoinduced Ni-Br bond rupture in the (dtbbpy)NiII(aryl)(Br) complex. Using multireference ab initio calculations, we characterized the excited state potential energy surfaces corresponding to metal-to-ligand charge transfer (MLCT) and ligand-to-metal charge transfer (LMCT). Our calculations reveal that the Ni-Br dissociation, triggered by an external photocatalyst, begins with the promotion of Ni(II) to a 1MLCT excited state. This state undergoes intersystem crossing with repulsive triplet surfaces corresponding to the 3MLCT and Br-to-Ni 3LMCT states, resulting in Ni-Br bond breaking via the Dexter energy transfer mechanism. In the absence of a photocatalyst, the photoexcited Ni(II) favors Ni-C(aryl) homolysis, whereas the presence of a photocatalyst promotes Ni-Br dissociation. The Ni(III) species, resulting from the oxidation of Ni(II) by the photocatalyst, was found to be unproductive toward Ni-Br or Ni-C(aryl) activation.
RESUMEN
Csp3-C cross-coupling by activating Csp3-H bonds is a dream reaction for the chemical community, and visible light-induced transition metal-catalysis under mild reaction conditions is considered a powerful tool to achieve it. Advancement of this research area is still in its infancy because of the chemical and technical complexity of this catalysis. Mechanistic studies illuminating the operative reaction pathways can rationalize the increasing amount of experimental catalysis data and provide the knowledge allowing faster and rational advances in the field. This goal requires complementary experimental and theoretical mechanistic studies, as each of them is unfit to clarify the operative mechanisms alone. In this tutorial review we summarize representative experimental and computational mechanistic studies, highlighting weaknesses, strengths, and synergies between the two approaches.
RESUMEN
The development of metal complexes that function as both photocatalyst and cross-coupling catalyst remains a challenging research topic. So far, progress has been shown in palladium(0) excited-state transition metal catalysis for the construction of carbon-carbon bonds where the oxidative addition of alkyl/aryl halides to zero-valent palladium (Pd0 ) is achievable at room temperature. In contrast, the analogous process with divalent palladium (PdII ) is uphill and endothermic. For the first time, we report that divalent palladium can act as a light-absorbing species that undergoes double excitation to realize carbon-nitrogen (C-N) cross-couplings under air. Differently substituted aryl halides can be applied in the mild, and selective cross-coupling amination using palladium acetate as both photocatalyst and cross-coupling catalyst at room temperature. Density functional theory studies supported by mechanistic investigations provide insight into the reaction mechanism.
RESUMEN
Bicyclo[1.1.1]pentane (BCP), recognized as a bioisostere for para-disubstituted benzene, has gained widespread interest in drug development due to its ability to enhance the physicochemical properties of pharmaceuticals. In this work, we introduce a photoinduced, halogen bonding-initiated, metal-free strategy for synthesizing various BCP derivatives. This method involves the generation of nucleophilic α-aminoalkyl radicals via halogen-bonding adducts. These undergo selective radical addition to [1.1.1]propellane, yielding electrophilic BCP radicals that subsequently participate in polarity-matched additions, culminating in the difunctionalization of bicyclopentane. The versatility and practicality of this metal-free approach are underscored by its broad substrate scope, which includes late-stage functionalization and a series of valuable transformations, all conducted under mild reaction conditions.
RESUMEN
Here we report a practical, highly enantioselective photoredox allylation of aldehydes mediated by chiral nickel complexes with commercially available allyl acetate as the allylating agent. The methodology allows the clean stereoselective allylation of aldehydes in good to excellent yields and up to 93 % e.e. using a catalytic amount of NiCl2 (glyme) in the presence of the chiral aminoindanol-derived bis(oxazoline) as the chiral ligand. The photoredox system is constituted by the organic dye 3DPAFIPN and a Hantzsch's ester as the sacrificial reductant. The reaction proceeds under visible-light irradiation (blue LEDs, 456â nm) at 8-12 °C. Compared to other published procedures, no metal reductants (such as Zn or Mn), additives (e.g. CuI) or air-sensitive Ni(COD)2 are necessary for this reaction. Accurate DFT calculations and photophysical experiments have clarified the mechanistic picture of this stereoselective allylation reaction.
RESUMEN
The separation of styrene (ST) and ethylbenzene (EB) mixtures is of great importance in the petrochemical and plastics industries. Current technology employs multiple cycles of energy-intensive distillation due to the very close boiling points of ST and EB. Here, we show that the molecular sieving properties of easily scalable and stable trianglimine crystals offer ultrahigh selectivity (99%) for styrene separation. The unique molecular sieving properties of trianglimine crystals are corroborated by DFT calculations, suggesting that the incorporation of the nonplanar EB requires a significant deformation of the macrocyclic cavity whereas the planar ST can be easily accommodated in the cavity.
RESUMEN
A magnesium-catalyzed regiodivergent C-O bond cleavage protocol is presented. Readily available magnesium catalysts achieve the selective hydroboration of a wide range of epoxides and oxetanes yielding secondary and tertiary alcohols in excellent yields and regioselectivities. Experimental mechanistic investigations and DFT calculations provide insight into the unexpected regiodivergence and explain the different mechanisms of the C-O bond activation and product formation.
RESUMEN
We report here a comprehensive computational analysis of the mechanisms of the photoredox-nickel-HAT (HAT: hydrogen atom transfer) catalyzed arylation and alkylation of α-amino Csp3-H bonds developed by MacMillan and co-workers. Different alternatives for the three catalytic cycles were tested to identify unambiguously the operative reaction mechanism. Our analysis indicated that the IrIII photoredox catalyst, upon irradiation with visible light, can be either reduced or oxidized by the HAT and nickel catalysts, respectively, indicating that both reductive and oxidative quenching catalytic cycles can be operative, although the reductive cycle is favored. Our analysis of the HAT cycle indicated that activation of a α-amino Csp3-H bond of the substrate is facile and selective relative to activation of a ß-amino Csp3-H bond. Finally, our analysis of the nickel cycle indicated that both arylation and alkylation of α-amino Csp3-H bonds occurs via the sequence of nickel oxidation states NiI-NiII-NiI-NiIII and of elementary steps: radical addition-SET-oxidative addition-reductive elimination.
RESUMEN
A series of methyl aluminum complexes bearing chiral biphenol-type ligands were found to be highly active catalysts in the asymmetric reduction of heterocyclic ketones (S/C = 100-500, ee up to 99%). The protocol is suitable for a wide range of substrates and has a high tolerance to functional groups. The formed 2-heterocyclic-alcohols are valuable building blocks in drug discovery or can be used as ligands in asymmetric catalysis. Isolation and comprehensive characterization of the reaction intermediates support a catalysis cycle proposed by DFT calculations.
RESUMEN
The first highly enantioselective arylogous Michael reaction (AMR) of 3-unsubstituted phthalides has been described. This phase-transfer methodology, which uses catalytic amounts of KOH/18-crown-6 catalyst in mesitylene in the presence of N,O-bis(trimethylsilyl)acetamide (BSA), gives access to a broad range of 3-monosubstituted phthalides with high levels of syn diastereoselectivity and good yields, starting from 3-unsubstituted derivatives and diverse α,ß-unsaturated carbonyl compounds. The reaction also applies to unactivated 3-alkyl phthalides to afford 3,3-dialkyl derivatives. A plausible mechanism has been suggested. DFT analysis of possible transition states gives a rationale of the high syn diastereoselectivity observed and its correlation with the solvent's dielectric constant.
RESUMEN
We applied the domain based local pair natural orbital coupled cluster approach with single, double, and perturbative triple excitations, DLPNO-CCSD(T), to rationalize more than 130 experimental bond dissociation enthalpies collected in the work of Rodgers and Armentrout [Chem. Rev. 116, 5642-5687 (2016)] and involving alkali metal cations and versatile neutral organic and inorganic ligands ranging from common solvents to amino acids. In general, a remarkable agreement has been obtained between predicted and experimental alkali metal ion-ligand noncovalent bond strengths, highlighting a high degree of reliability of data assembled by Rodgers and Armentrout. In the case of some inconsistent experimental data given for some species, we pointed to a number for which best agreement with DLPNO-CCSD(T) calculations has been achieved. In addition, we refined a couple of ΔH0 for which DLPNO-CCSD(T) values turned out to be significantly different from their experimental counterparts. We suggest an application of the DLPNO-CCSD(T) to derive the reference values to train/validate force field and neural network methods to be further applied in molecular dynamic simulations to unravel the mechanisms in biological systems and alkali metal ion batteries.
RESUMEN
A magnesium-catalyzed hydroboration of alkynes providing good yields and selectivities for a wide range of terminal and symmetrical and unsymmetrical internal alkynes has been developed. The compatibility with many functional groups makes this magnesium catalyzed procedure attractive for late stage functionalization. Experimental mechanistic investigations and DFT calculations reveal insights into the reaction mechanism of the magnesium catalyzed protocol.
RESUMEN
Asymmetric catalysis with readily available, cheap, and non-toxic alkaline earth metal catalysts represents a sustainable alternative to conventional synthesis methodologies. In this context, we describe the development of a first MgII -catalyzed enantioselective hydroboration providing the products with excellent yields and enantioselectivities. NMR spectroscopy studies and DFT calculations provide insights into the reaction mechanism and the origin of the enantioselectivity which can be explained by a metal-ligand cooperative catalysis pathway involving a non-innocent ligand.
RESUMEN
Visible-light induced, palladium catalyzed alkylations of α,ß-unsaturated acids with unactivated alkyl bromides are described. A variety of primary, secondary, and tertiary alkyl bromides are activated by the photoexcited palladium metal catalyst to provide a series of olefins at room temperature under mild reaction conditions. Mechanistic investigations and density functional theory (DFT) studies suggest that a photoinduced inner-sphere mechanism is operative in which a barrierless, single-electron transfer oxidative addition of the alkyl halide to Pd0 is key for the efficient transformation.
RESUMEN
Detailed investigations of the electronic structure and bonding scenario in different carbene-phosphinidenes have been presented using state-of-the-art computational methods (BP86/def2-TZVPP//BP86/def2-SVP). We have endeavored to find the correlation of the calculated 31P chemical shifts with different bonding parameters of compounds to access the relative π-acceptor strengths of the carbenes. 31P chemical shifts exhibit a weak correlation with σ-polarizations of Ccarb-P bonds toward phosphorus; however excellent correlations are obtained in the case of π-polarizations of Ccarb-P bonds toward the carbene carbon (Ccarb) and NPA charges on phosphorus atoms. 31P chemical shifts also show excellent correlations with the electron densities and energy densities of Ccarb-P bonds at BCPs, as suggested by QTAIM calculations. Moreover, EDA-NOCV analysis is implemented to gain brief insight into the bonding scenario in this class of compounds. Good correlation exists between the interaction energies between the carbene and PPh fragments and 31P chemical shifts. Additionally, we have investigated the correlations of calculated 31P chemical shifts with different bonding parameters of the corresponding free carbenes. The bonding scenario in different carbene-substituted phosphinidenes is also explored to see how the bonding situation depends on various substituents on phosphinidenes. The other substituted carbene-phosphinidenes show correlations similar to those of carbene-phenylphosphinidenes.
RESUMEN
The effect of substituents in disilene mediated N2O activation was studied at the M06-2X/QZVP//ωB97xD/TZVP level of theory. The relationship between structural diversity and the corresponding reactivity of six disilenes (IA-Ft) in the presence of four different substituents (-NMe2, -Cl, -Me, -SiMe3) is addressed in this investigation. We primarily propose two plausible mechanistic routes: Pathway I featuring disilene â silylene decomposition followed by N2O coordination and Pathway II constituting the N2O attack without Si-Si bond cleavage. Depending on the fashion of N2O approach the latter route was further differentiated into Pathway IIa and Pathway IIb detailing the "end-on" and "side-on" attack to the disilene scaffold. Interestingly, the lone pair containing substituents (-NMe2, -Cl,) facilitates disilene â silylene dissociation; on the contrary it reduces the electrophilicity at Si center in silylene, a feature manifested with higher activation barrier during N2O attack. In the absence of any lone-pair influence from substituents (-Me, -SiMe3), the decomposition of disilenes is considerably endothermic. Therefore, Pathway I appears to be the less preferred route for both types of substituents. In Pathway IIa, the N2O moiety uniformly approaches via O-end to both the silicon centers in disilenes. However, the calculations reveal that Pathway IIa, although not operational for all disilenes, is unlikely to be a viable route due to the predominantly higher transition barrier (ca. 36 kcal/mol). The most feasible route in this current study accompanying moderately low activation barriers (â¼19-26 kcal/mol) is Pathway IIb, which involves successive addition of two N2O units proceeding via terminal N, O toward the Si centers and is applicable for all disilenes. The reactivity of substituted disilenes can be estimated in terms of the first activation barrier of N2O attack. Surprisingly, in Pathway IIb, the initial activation barrier and hence the reactivity shows negligible correlation with Si-Si bond strength, indicating toward the versatility of the reaction route.
RESUMEN
DFT calculations were performed to elucidate the oxidative addition mechanism of the dimeric palladium(II) abnormal N-heterocyclic carbene complex 2 in the presence of phenyl chloride and NaOMe base under the framework of a Suzuki-Miyaura cross-coupling reaction. Pre-catalyst 2 undergoes facile, NaOMe-assisted dissociation, which led to monomeric palladium(II) species 5, 6, and 7, each of them independently capable of initiating oxidative addition reactions with PhCl. Thereafter, three different mechanistic routes, path a, path b, and path c, which originate from the catalytic species 5, 7, and 6, were calculated at M06-L-D3(SMD)/LANL2TZ(f)(Pd)/6-311++G**//M06-L/LANL2DZ(Pd)/6-31+G* level of theory. All studied routes suggested the rather uncommon PdII /PdIV oxidative addition mechanism to be favourable under the ambient reaction conditions. Although the Pd0 /PdII routes are generally facile, the final reductive elimination step from the catalytic complexes were energetically formidable. The PdII /PdIV activation barriers were calculated to be 11.3, 9.0, 26.7â kcal mol-1 (ΔΔ≠ GLS-D3 ) more favourable than the PdII /Pd0 reductive elimination routes for path a, path b, and path c, respectively. Out of all the studied pathways, path a was the most feasible as it comprised of a PdII /PdIV activation barrier of 24.5â kcal mol-1 (ΔGLS-D3 ). To further elucidate the origin of transition-state barriers, EDA calculations were performed for some key saddle points populating the energy profiles.