Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(2): 525-547, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38084926

RESUMEN

DNA-protein crosslinks (DPCs) are toxic DNA lesions wherein a protein is covalently attached to DNA. If not rapidly repaired, DPCs create obstacles that disturb DNA replication, transcription and DNA damage repair, ultimately leading to genome instability. The persistence of DPCs is associated with premature ageing, cancer and neurodegeneration. In mammalian cells, the repair of DPCs mainly relies on the proteolytic activities of SPRTN and the 26S proteasome, complemented by other enzymes including TDP1/2 and the MRN complex, and many of the activities involved are essential, restricting genetic approaches. For many years, the study of DPC repair in mammalian cells was hindered by the lack of standardised assays, most notably assays that reliably quantified the proteins or proteolytic fragments covalently bound to DNA. Recent interest in the field has spurred the development of several biochemical methods for DPC analysis. Here, we critically analyse the latest techniques for DPC isolation and the benefits and drawbacks of each. We aim to assist researchers in selecting the most suitable isolation method for their experimental requirements and questions, and to facilitate the comparison of results across different laboratories using different approaches.


Asunto(s)
Daño del ADN , Proteínas , Animales , Proteínas/genética , ADN/genética , ADN/metabolismo , Replicación del ADN , Reparación del ADN , Mamíferos/genética
2.
PLoS Genet ; 17(4): e1009329, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33857147

RESUMEN

Nicks are the most frequent form of DNA damage and a potential source of mutagenesis in human cells. By deep sequencing, we have identified factors and pathways that promote and limit mutagenic repair at a targeted nick in human cells. Mutations were distributed asymmetrically around the nick site. BRCA2 inhibited all categories of mutational events, including indels, SNVs and HDR. DNA2 and RPA promoted resection. DNA2 inhibited 1 bp deletions but contributed to longer deletions, as did REV7. POLQ stimulated SNVs. Parallel analysis of DSBs targeted to the same site identified similar roles for DNA2 and POLQ (but not REV7) in promoting deletions and for POLQ in stimulating SNVs. Insertions were infrequent at nicks, and most were 1 bp in length, as at DSBs. The translesion polymerase REV1 stimulated +1 insertions at one nick site but not another, illustrating the potential importance of sequence context in determining the outcome of mutagenic repair. These results highlight the potential for nicks to promote mutagenesis, especially in BRCA-deficient cells, and identify mutagenic signatures of DNA2, REV1, REV3, REV7 and POLQ.


Asunto(s)
Proteína BRCA2/genética , Roturas del ADN de Cadena Simple , Daño del ADN/genética , Mutagénesis/genética , Ciclo Celular/genética , Roturas del ADN de Doble Cadena , ADN Helicasas/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación INDEL/genética , Proteínas Mad2/genética , Nucleotidiltransferasas/genética , ARN Guía de Kinetoplastida/genética , Transducción de Señal/genética , ADN Polimerasa theta
3.
Proc Natl Acad Sci U S A ; 117(37): 22900-22909, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32873648

RESUMEN

Interhomolog recombination (IHR) occurs spontaneously in somatic human cells at frequencies that are low but sufficient to ameliorate some genetic diseases caused by heterozygous mutations or autosomal dominant mutations. Here we demonstrate that DNA nicks or double-strand breaks (DSBs) targeted by CRISPR-Cas9 to both homologs can stimulate IHR and associated copy-neutral loss of heterozygosity (cnLOH) in human cells. The frequency of IHR is 10-fold lower at nicks than at DSBs, but cnLOH is evident in a greater fraction of recombinants. IHR at DSBs occurs predominantly via reciprocal end joining. At DSBs, depletion of POLQ caused a dramatic increase in IHR and in the fraction of recombinants exhibiting cnLOH, suggesting that POLQ promotes end joining in cis, which limits breaks available for recombination in trans These results define conditions that may produce cnLOH as a mutagenic signature in cancer and may, conversely, promote therapeutic correction of both compound heterozygous and dominant negative mutations associated with genetic disease.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Polimerasa Dirigida por ADN/metabolismo , Reparación del ADN por Recombinación , Sistemas CRISPR-Cas , Línea Celular Tumoral , Roturas del ADN de Cadena Simple , Reparación del ADN por Unión de Extremidades , ADN Ligasas/genética , ADN Ligasas/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Heterocigoto , Humanos , Pérdida de Heterocigocidad , Mutación , Recombinación Genética , ADN Polimerasa theta
4.
PLoS Genet ; 15(2): e1007968, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30811383

RESUMEN

Activation-induced deaminase (AID) converts C to U and 5-methyl-C to T. These mutagenic activities are critical to immunoglobulin (Ig) gene diversification and epigenetic reprogramming, but they must be tightly controlled to prevent compromising cell fitness. AID acts in the nucleus but localizes predominately to the cytoplasm. To address this apparent paradox, we have carried out time-lapse imaging of AID in single living B cells and fibroblasts. We demonstrate that AID enters the nucleus in brief (30 min) pulses, evident in about 10% of cells in the course of a single cell cycle (24 hr imaging). Pulses do not depend on AID catalytic activity, but they are coordinated with nuclear accumulation of P53. Pulsing may protect cells from pathologic consequences of excess exposure to AID, or enable AID to synchronize its activity with transcription of genes that are AID targets or with nuclear entry of factors that act at sites of AID-catalyzed DNA deamination to promote Ig gene diversification or epigenetic reprogramming.


Asunto(s)
Núcleo Celular/ultraestructura , Citidina Desaminasa/metabolismo , Citoplasma/ultraestructura , Análisis de la Célula Individual/métodos , Imagen de Lapso de Tiempo/métodos , Proteína p53 Supresora de Tumor/metabolismo , Linfocitos B/citología , Linfocitos B/enzimología , Linfocitos B/ultraestructura , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Epigénesis Genética , Fibroblastos/citología , Fibroblastos/enzimología , Fibroblastos/ultraestructura , Variación Genética , Humanos , Inmunoglobulinas/genética , Microscopía Fluorescente , Transporte de Proteínas
5.
Anal Biochem ; 608: 113827, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32738213

RESUMEN

Topoisomerases are proven drug targets, but antibiotics that poison bacterial Topoisomerase 1 (Top1) have yet to be discovered. We have developed a rapid and direct assay for quantification of Top1-DNA adducts that is suitable for high throughput assays. Adducts are recovered by "RADAR fractionation", a quick, convenient approach in which cells are lysed in chaotropic salts and detergent and nucleic acids and covalently bound adducts then precipitated with alcohol. Here we show that RADAR fractionation followed by ELISA immunodetection can quantify adducts formed by wild-type and mutant Top1 derivatives encoded by two different bacterial pathogens, Y. pestis and M. tuberculosis, expressed in E. coli or M. smegmatis, respectively. For both enzymes, quantification of adducts by RADAR/ELISA produces results comparable to the more cumbersome classical approach of CsCl density gradient fractionation. The experiments reported here establish that RADAR/ELISA assay offers a simple way to characterize Top1 mutants and analyze kinetics of adduct formation and repair. They also provide a foundation for discovery and optimization of drugs that poison bacterial Top1 using standard high-throughput approaches.


Asunto(s)
Proteínas Bacterianas/análisis , Fraccionamiento Celular/métodos , Aductos de ADN/análisis , ADN-Topoisomerasas de Tipo I/análisis , Ensayo de Inmunoadsorción Enzimática/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/aislamiento & purificación , Aductos de ADN/aislamiento & purificación , ADN-Topoisomerasas de Tipo I/aislamiento & purificación , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Immunoblotting/métodos , Mycobacterium smegmatis/química , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Reproducibilidad de los Resultados , Yersinia pestis/genética
6.
Nucleic Acids Res ; 46(14): 6962-6973, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29986051

RESUMEN

Discontinuities in only a single strand of the DNA duplex occur frequently, as a result of DNA damage or as intermediates in essential nuclear processes and DNA repair. Nicks are the simplest of these lesions: they carry clean ends bearing 3'-hydroxyl groups that can undergo ligation or prime new DNA synthesis. In contrast, single-strand breaks also interrupt only one DNA strand, but they carry damaged ends that require clean-up before subsequent steps in repair. Despite their apparent simplicity, nicks can have significant consequences for genome stability. The availability of enzymes that can introduce a nick almost anywhere in a large genome now makes it possible to systematically analyze repair of nicks. Recent experiments demonstrate that nicks can initiate recombination via pathways distinct from those active at double-strand breaks (DSBs). Recombination at targeted DNA nicks can be very efficient, and because nicks are intrinsically less mutagenic than DSBs, nick-initiated gene correction is useful for genome engineering and gene therapy. This review revisits some physiological examples of recombination at nicks, and outlines experiments that have demonstrated that nicks initiate homology-directed repair by distinctive pathways, emphasizing research that has contributed to our current mechanistic understanding of recombination at nicks in mammalian cells.


Asunto(s)
Daño del ADN , Reparación del ADN por Recombinación , Variación Antigénica , Roturas del ADN de Cadena Simple , Replicación del ADN , Escherichia coli/genética , Factor F/genética , Proteínas Fimbrias/genética , G-Cuádruplex , Conversión Génica , Elementos de Nucleótido Esparcido Largo , Saccharomyces cerevisiae/genética
7.
Nucleic Acids Res ; 46(18): 9496-9509, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30107528

RESUMEN

RECQ5 (RECQL5) is one of several human helicases that dissociates RAD51-DNA filaments. The gene that encodes RECQ5 is frequently amplified in human tumors, but it is not known whether amplification correlates with increased gene expression, or how increased RECQ5 levels affect DNA repair at nicks and double-strand breaks. Here, we address these questions. We show that RECQ5 gene amplification correlates with increased gene expression in human tumors, by in silico analysis of over 9000 individual tumors representing 32 tumor types in the TCGA dataset. We demonstrate that, at double-strand breaks, increased RECQ5 levels inhibited canonical homology-directed repair (HDR) by double-stranded DNA donors, phenocopying the effect of BRCA deficiency. Conversely, at nicks, increased RECQ5 levels stimulated 'alternative' HDR by single-stranded DNA donors, which is normally suppressed by RAD51; this was accompanied by stimulation of mutagenic end-joining. Even modest changes (2-fold) in RECQ5 levels caused significant dysregulation of repair, especially HDR. These results suggest that in some tumors, RECQ5 gene amplification may have profound consequences for genomic instability.


Asunto(s)
Inestabilidad Genómica/genética , Neoplasias/genética , Recombinasa Rad51/genética , RecQ Helicasas/genética , Simulación por Computador , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN/genética , Amplificación de Genes/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Mutagénesis , Neoplasias/patología , Reparación del ADN por Recombinación/genética , Transducción de Señal/genética
8.
Hum Mol Genet ; 25(10): 2060-2069, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26984941

RESUMEN

The Werner syndrome (WS) is a prototypic adult Mendelian progeroid syndrome in which signs of premature aging are associated with genomic instability and an elevated risk of cancer. The WRN RECQ helicase protein binds and unwinds G-quadruplex (G4) DNA substrates in vitro, and we identified significant enrichment in G4 sequence motifs at the transcription start site and 5' ends of first introns (false discovery rate < 0.001) of genes down-regulated in WS patient fibroblasts. This finding provides strong evidence that WRN binds G4 DNA structures at many chromosomal sites to modulate gene expression. WRN appears to bind a distinct subpopulation of G4 motifs in human cells, when compared with the related Bloom syndrome RECQ helicase protein. Functional annotation of the genes and miRNAs altered in WS provided new insight into WS disease pathogenesis. WS patient fibroblasts displayed altered expression of multiple, mechanistically distinct, senescence-associated gene expression programs, with altered expression of disease-associated miRNAs, and dysregulation of canonical pathways that regulate cell signaling, genome stability and tumorigenesis. WS fibroblasts also displayed a highly statistically significant and distinct gene expression signature, with coordinate overexpression of nearly all of the cytoplasmic tRNA synthetases and associated ARS-interacting multifunctional protein genes. The 'non-canonical' functions of many of these upregulated tRNA charging proteins may together promote WS disease pathogenesis. Our results identify the human WRN RECQ protein as a G4 helicase that modulates gene expression in G4-dependent fashion at many chromosomal sites and provide several new and unexpected mechanistic insights into WS disease pathogenesis.


Asunto(s)
Proteínas de Unión al ADN/genética , Inestabilidad Genómica/genética , Neoplasias/genética , RecQ Helicasas/genética , Síndrome de Werner/genética , Carcinogénesis/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos , G-Cuádruplex , Regulación de la Expresión Génica , Genoma Humano , Humanos , MicroARNs , Neoplasias/patología , Motivos de Nucleótidos , RecQ Helicasas/metabolismo
9.
PLoS Genet ; 11(9): e1005411, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26355458

RESUMEN

AID (Activation Induced Deaminase) deaminates cytosines in DNA to initiate immunoglobulin gene diversification and to reprogram CpG methylation in early development. AID is potentially highly mutagenic, and it causes genomic instability evident as translocations in B cell malignancies. Here we show that AID is cell cycle regulated. By high content screening microscopy, we demonstrate that AID undergoes nuclear degradation more slowly in G1 phase than in S or G2-M phase, and that mutations that affect regulatory phosphorylation or catalytic activity can alter AID stability and abundance. We directly test the role of cell cycle regulation by fusing AID to tags that destabilize nuclear protein outside of G1 or S-G2/M phases. We show that enforced nuclear localization of AID in G1 phase accelerates somatic hypermutation and class switch recombination, and is well-tolerated; while nuclear AID compromises viability in S-G2/M phase cells. We identify AID derivatives that accelerate somatic hypermutation with minimal impact on viability, which will be useful tools for engineering genes and proteins by iterative mutagenesis and selection. Our results further suggest that use of cell cycle tags to regulate nuclear stability may be generally applicable to studying DNA repair and to engineering the genome.


Asunto(s)
Ciclo Celular , Núcleo Celular/enzimología , Citidina Desaminasa/metabolismo , Biocatálisis , Línea Celular , Estabilidad de Enzimas , Humanos , Fosforilación , Proteolisis , Ubiquitina/metabolismo
10.
EMBO Rep ; 16(8): 910-22, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26150098

RESUMEN

Recent research has established clear connections between G-quadruplexes and human disease. Features of quadruplex structures that promote genomic instability have been determined. Quadruplexes have been identified as transcriptional, translational and epigenetic regulatory targets of factors associated with human genetic disease. An expandable GGGGCC motif that can adopt a G4 structure, located in the previously obscure C9ORF72 locus, has been shown to contribute to two well-recognized neurodegenerative diseases, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This review focuses on these advances, which further dispel the view that genomic biology is limited to the confines of the canonical B-form DNA duplex, and show how quadruplexes contribute spatial and temporal dimensionalities to linear sequence information. This recent progress also has clear practical ramifications, as prevention, diagnosis, and treatment of disease depend on understanding the underlying mechanisms.


Asunto(s)
Enfermedad/genética , G-Cuádruplex , Genoma Humano , Enfermedades del Sistema Nervioso/genética , Animales , ADN/genética , Inestabilidad Genómica , Humanos , Neoplasias/genética
11.
Proc Natl Acad Sci U S A ; 111(10): E924-32, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24556991

RESUMEN

DNA nicks are the most common form of DNA damage, and if unrepaired can give rise to genomic instability. In human cells, nicks are efficiently repaired via the single-strand break repair pathway, but relatively little is known about the fate of nicks not processed by that pathway. Here we show that homology-directed repair (HDR) at nicks occurs via a mechanism distinct from HDR at double-strand breaks (DSBs). HDR at nicks, but not DSBs, is associated with transcription and is eightfold more efficient at a nick on the transcribed strand than at a nick on the nontranscribed strand. HDR at nicks can proceed by a pathway dependent upon canonical HDR factors RAD51 and BRCA2; or by an efficient alternative pathway that uses either ssDNA or nicked dsDNA donors and that is strongly inhibited by RAD51 and BRCA2. Nicks generated by either I-AniI or the CRISPR/Cas9(D10A) nickase are repaired by the alternative HDR pathway with little accompanying mutagenic end-joining, so this pathway may be usefully applied to genome engineering. These results suggest that alternative HDR at nicks may be stimulated in physiological contexts in which canonical RAD51/BRCA2-dependent HDR is compromised or down-regulated, which occurs frequently in tumors.


Asunto(s)
Roturas del ADN de Cadena Simple , Modelos Genéticos , Reparación del ADN por Recombinación/fisiología , Proteína BRCA2/genética , Línea Celular , Citometría de Flujo , Regulación de la Expresión Génica/fisiología , Ingeniería Genética/métodos , Humanos , ARN Interferente Pequeño/genética , Recombinasa Rad51/genética , Reparación del ADN por Recombinación/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Proc Natl Acad Sci U S A ; 111(27): 9905-10, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24958861

RESUMEN

Bloom syndrome is a rare autosomal recessive disorder characterized by genetic instability and cancer predisposition, and caused by mutations in the gene encoding the Bloom syndrome, RecQ helicase-like (BLM) protein. To determine whether altered gene expression might be responsible for pathological features of Bloom syndrome, we analyzed mRNA and microRNA (miRNA) expression in fibroblasts from individuals with Bloom syndrome and in BLM-depleted control fibroblasts. We identified mRNA and miRNA expression differences in Bloom syndrome patient and BLM-depleted cells. Differentially expressed mRNAs are connected with cell proliferation, survival, and molecular mechanisms of cancer, and differentially expressed miRNAs target genes involved in cancer and in immune function. These and additional altered functions or pathways may contribute to the proportional dwarfism, elevated cancer risk, immune dysfunction, and other features observed in Bloom syndrome individuals. BLM binds to G-quadruplex (G4) DNA, and G4 motifs were enriched at transcription start sites (TSS) and especially within first introns (false discovery rate ≤ 0.001) of differentially expressed mRNAs in Bloom syndrome compared with normal cells, suggesting that G-quadruplex structures formed at these motifs are physiologic targets for BLM. These results identify a network of mRNAs and miRNAs that may drive the pathogenesis of Bloom syndrome.


Asunto(s)
Síndrome de Bloom/genética , ADN/química , G-Cuádruplex , Regulación Enzimológica de la Expresión Génica , RecQ Helicasas/genética , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , ARN Mensajero/genética
13.
Nat Chem Biol ; 10(4): 313-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24609361

RESUMEN

G4 motifs are greatly enriched near promoters, suggesting that quadruplex structures may be targets of transcriptional regulation. Here we show, by ChIP-Seq analysis of human cells, that 40% of the binding sites of the transcription-associated helicases, XPB and XPD, overlap with G4 motifs. The highly significant overlap of XPB and XPD binding sites with G4 motifs cannot be explained by GC richness or parameters of the genomewide analysis, but instead suggests that these proteins are recruited to quadruplex structures that form in genomic DNA (G4 DNA). Biochemical analysis demonstrates that XPD is a robust G4 DNA helicase and that XPB binds G4 DNA. XPB and XPD are enriched near the transcription start site at 20% of genes, especially highly transcribed genes. XPB and XPD enrichment at G4 motifs characterizes specific signaling pathways and regulatory pathways associated with specific cancers. These results identify new candidate pathways for therapies targeted to quadruplexes.


Asunto(s)
ADN Helicasas/genética , Proteínas de Unión al ADN/genética , G-Cuádruplex , Regulación de la Expresión Génica/genética , Genoma/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Electrocromatografía Capilar , Línea Celular , ADN/genética , ADN Helicasas/metabolismo , Vectores Genéticos , Humanos , Análisis por Micromatrices , Mutación Puntual/genética , Mutación Puntual/fisiología , ARN/biosíntesis , ARN/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Transducción de Señal/genética
14.
Nucleic Acids Res ; 42(13): e108, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24914050

RESUMEN

Enzymes that form transient DNA-protein covalent complexes are targets for several potent classes of drugs used to treat infectious disease and cancer, making it important to establish robust and rapid procedures for analysis of these complexes. We report a method for isolation of DNA-protein adducts and their identification and quantification, using techniques compatible with high-throughput screening. This method is based on the RADAR assay for DNA adducts that we previously developed (Kiianitsa and Maizels (2013) A rapid and sensitive assay for DNA-protein covalent complexes in living cells. Nucleic Acids Res., 41:e104), but incorporates three key new steps of broad applicability. (i) Silica-assisted ethanol/isopropanol precipitation ensures reproducible and efficient recovery of DNA and DNA-protein adducts at low centrifugal forces, enabling cell culture and DNA precipitation to be carried out in a single microtiter plate. (ii) Rigorous purification of DNA-protein adducts by a procedure that eliminates free proteins and free nucleic acids, generating samples suitable for detection of novel protein adducts (e.g. by mass spectroscopy). (iii) Identification and quantification of DNA-protein adducts by direct ELISA assay. The ELISA-based RADAR assay can detect Top1-DNA and Top2a-DNA adducts in human cells, and gyrase-DNA adducts in Escherichia coli. This approach will be useful for discovery and characterization of new drugs to treat infectious disease and cancer, and for development of companion diagnostics assays for individualized medicine.


Asunto(s)
Aductos de ADN/análisis , Proteínas de Unión al ADN/análisis , Ensayo de Inmunoadsorción Enzimática/métodos , Antígenos de Neoplasias/análisis , Línea Celular , Línea Celular Tumoral , Aductos de ADN/aislamiento & purificación , Girasa de ADN/análisis , Reparación del ADN , ADN-Topoisomerasas de Tipo I/análisis , ADN-Topoisomerasas de Tipo II/análisis , Proteínas de Unión al ADN/aislamiento & purificación , Escherichia coli/enzimología , Escherichia coli/genética , Humanos , Proteínas de Unión a Poli-ADP-Ribosa
15.
Nucleic Acids Res ; 42(1): e4, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24121685

RESUMEN

The creation of a DNA break at a specific locus by a designer endonuclease can be harnessed to edit a genome. However, DNA breaks may engage one of several competing repair pathways that lead to distinct types of genomic alterations. Therefore, understanding the contribution of different repair pathways following the introduction of a targeted DNA break is essential to further advance the safety and efficiency of nuclease-induced genome modification. To gain insight into the role of different DNA repair pathways in resolving nuclease-induced DNA breaks into genome editing outcomes, we previously developed a fluorescent-based reporter system, designated the Traffic Light Reporter, which provides a readout of gene targeting and gene disruption downstream of a targeted DNA double-strand break. Here we describe two related but novel reporters that extend this technology: one that allows monitoring of the transcriptional activity at the reporter locus, and thus can be applied to interrogate break resolution at active and repressed loci; and a second that reads out single-strand annealing in addition to gene targeting and gene disruption. Application of these reporters to assess repair pathway usage in several common gene editing contexts confirms the importance that chromatin status and initiation of end resection have on the resolution of nuclease-induced breaks.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Endodesoxirribonucleasas , Genes Reporteros , Citometría de Flujo , Fluorescencia , Silenciador del Gen , Genes , Sitios Genéticos , Genoma , Genómica/métodos , Células HEK293 , Humanos , Proteínas Luminiscentes/genética , Transcripción Genética
16.
PLoS Genet ; 9(4): e1003468, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23637633

RESUMEN

Recent experiments provide fascinating examples of how G4 DNA and G4 RNA structures--aka quadruplexes--may contribute to normal biology and to genomic pathologies. Quadruplexes are transient and therefore difficult to identify directly in living cells, which initially caused skepticism regarding not only their biological relevance but even their existence. There is now compelling evidence for functions of some G4 motifs and the corresponding quadruplexes in essential processes, including initiation of DNA replication, telomere maintenance, regulated recombination in immune evasion and the immune response, control of gene expression, and genetic and epigenetic instability. Recognition and resolution of quadruplex structures is therefore an essential component of genome biology. We propose that G4 motifs and structures that participate in key processes compose the G4 genome, analogous to the transcriptome, proteome, or metabolome. This is a new view of the genome, which sees DNA as not only a simple alphabet but also a more complex geography. The challenge for the future is to systematically identify the G4 motifs that form quadruplexes in living cells and the features that confer on specific G4 motifs the ability to function as structural elements.


Asunto(s)
Replicación del ADN , G-Cuádruplex , ADN/química , ADN Helicasas/genética , Humanos
17.
Gastroenterology ; 147(3): 637-45, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24859205

RESUMEN

BACKGROUND & AIMS: The CpG island methylator phenotype (CIMP), defined by a high frequency of aberrantly methylated genes, is a characteristic of a subclass of colon tumors with distinct clinical and molecular features. Cohort studies have produced conflicting results on responses of CIMP-positive tumors to chemotherapy. We assessed the association between tumor CIMP status and survival of patients receiving adjuvant fluorouracil and leucovorin alone or with irinotecan (IFL). METHODS: We analyzed data from patients with stage III colon adenocarcinoma randomly assigned to groups given fluorouracil and leucovorin or IFL after surgery, from April 1999 through April 2001. The primary end point of the trial was overall survival and the secondary end point was disease-free survival. DNA isolated from available tumor samples (n = 615) was used to determine CIMP status based on methylation patterns at the CACNA1G, IGF2, NEUROG1, RUNX3, and SOCS1 loci. The effects of CIMP on survival were modeled using Kaplan-Meier and Cox proportional hazards; interactions with treatment and BRAF, KRAS, and mismatch repair (MMR) status were also investigated. RESULTS: Of the tumor samples characterized for CIMP status, 145 were CIMP positive (23%). Patients with CIMP-positive tumors had shorter overall survival times than patients with CIMP-negative tumors (hazard ratio = 1.36; 95% confidence interval: 1.01-1.84). Treatment with IFL showed a trend toward increased overall survival for patients with CIMP-positive tumors, compared with treatment with fluorouracil and leucovorin (hazard ratio = 0.62; 95% CI: 0.37-1.05; P = .07), but not for patients with CIMP-negative tumors (hazard ratio = 1.38; 95% CI: 1.00-1.89; P = .049). In a 3-way interaction analysis, patients with CIMP-positive, MMR-intact tumors benefited most from the addition of irinotecan to fluorouracil and leucovorin therapy (for the interaction, P = .01). CIMP was more strongly associated with response to IFL than MMR status. Results for disease-free survival times were comparable among all analyses. CONCLUSIONS: Patients with stage III, CIMP-positive, MMR-intact colon tumors have longer survival times when irinotecan is added to combination therapy with fluorouracil and leucovorin.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Islas de CpG , Metilación de ADN , Adenocarcinoma/genética , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Adulto , Anciano , Anciano de 80 o más Años , Camptotecina/administración & dosificación , Camptotecina/análogos & derivados , Quimioterapia Adyuvante , Colectomía , Neoplasias del Colon/genética , Neoplasias del Colon/mortalidad , Neoplasias del Colon/patología , Reparación de la Incompatibilidad de ADN , Supervivencia sin Enfermedad , Femenino , Fluorouracilo/administración & dosificación , Humanos , Irinotecán , Estimación de Kaplan-Meier , Leucovorina/administración & dosificación , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Fenotipo , Modelos de Riesgos Proporcionales , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
18.
Nucleic Acids Res ; 41(9): e104, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23519618

RESUMEN

A number of proteins form covalent bonds with DNA as obligatory transient intermediates in normal nuclear transactions. Drugs that trap these complexes have proven to be potent therapeutics in both cancer and infectious disease. Nonetheless, current assays for DNA-protein adducts are cumbersome, limiting both mechanistic studies and translational applications. We have developed a rapid and sensitive assay that enables quantitative immunodetection of protein-DNA adducts. This new 'RADAR' (rapid approach to DNA adduct recovery) assay accelerates processing time 4-fold, increases sample throughput 20-fold and requires 50-fold less starting material than the current standard. It can be used to detect topoisomerase 1-DNA adducts in as little as 60 ng of DNA, corresponding to 10 000 human cells. We apply the RADAR assay to demonstrate that expression of SLFN11 does not increase camptothecin sensitivity by promoting accumulation of topoisomerase 1-DNA adducts. The RADAR assay will be useful for analysis of the mechanisms of formation and resolution of DNA-protein adducts in living cells, and identification and characterization of reactions in which covalent DNA adducts are transient intermediates. The assay also has potential application to drug discovery and individualized medicine.


Asunto(s)
Aductos de ADN/análisis , Proteínas de Unión al ADN/análisis , Inmunoensayo/métodos , Azacitidina/análogos & derivados , Azacitidina/química , Camptotecina/toxicidad , Línea Celular , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/análisis , ADN (Citosina-5-)-Metiltransferasas/inmunología , Aductos de ADN/química , ADN-Topoisomerasas de Tipo I/análisis , ADN-Topoisomerasas de Tipo I/inmunología , Proteínas de Unión al ADN/química , Decitabina , Humanos , Proteínas Nucleares/antagonistas & inhibidores , Inhibidores de Topoisomerasa I/toxicidad
19.
Crit Rev Biochem Mol Biol ; 47(3): 264-81, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22530743

RESUMEN

Many devastating human diseases are caused by mutations in a single gene that prevent a somatic cell from carrying out its essential functions, or by genetic changes acquired as a result of infectious disease or in the course of cell transformation. Targeted gene therapies have emerged as potential strategies for treatment of such diseases. These therapies depend upon rare-cutting endonucleases to cleave at specific sites in or near disease genes. Targeted gene correction provides a template for homology-directed repair, enabling the cell's own repair pathways to erase the mutation and replace it with the correct sequence. Targeted gene disruption ablates the disease gene, disabling its function. Gene targeting can also promote other kinds of genome engineering, including mutation, insertion, or gene deletion. Targeted gene therapies present significant advantages compared to approaches to gene therapy that depend upon delivery of stably expressing transgenes. Recent progress has been fueled by advances in nuclease discovery and design, and by new strategies that maximize efficiency of targeting and minimize off-target damage. Future progress will build on deeper mechanistic understanding of critical factors and pathways.


Asunto(s)
Enfermedades Genéticas Congénitas/terapia , Reparación del Gen Blanco/métodos , Cromosomas Humanos/genética , Roturas del ADN , División del ADN , Reparación del ADN por Unión de Extremidades , Endonucleasas/uso terapéutico , Enfermedades Genéticas Congénitas/genética , Genoma Humano , Humanos , Mutación , Ingeniería de Proteínas , Reparación del ADN por Recombinación , Reparación del Gen Blanco/normas , Transgenes
20.
Nucleic Acids Res ; 39(12): 4975-83, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21371997

RESUMEN

The RNA Pol II transcription complex pauses just downstream of the promoter in a significant fraction of human genes. The local features of genomic structure that contribute to pausing have not been defined. Here, we show that genes that pause are more G-rich within the region flanking the transcription start site (TSS) than RefSeq genes or non-paused genes. We show that enrichment of binding motifs for common transcription factors, such as SP1, may account for G-richness upstream but not downstream of the TSS. We further show that pausing correlates with the presence of a GrIn1 element, an element bearing one or more G4 motifs at the 5'-end of the first intron, on the non-template DNA strand. These results suggest potential roles for dynamic G4 DNA and G4 RNA structures in cis-regulation of pausing, and thus genome-wide regulation of gene expression, in human cells.


Asunto(s)
Guanina/análisis , Regiones Promotoras Genéticas , Elementos Reguladores de la Transcripción , Transcripción Genética , Sitios de Unión , Línea Celular Tumoral , Islas de CpG , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Intrones , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA