Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34502534

RESUMEN

Rare pediatric non-compaction and restrictive cardiomyopathy are usually associated with a rapid and severe disease progression. While the non-compaction phenotype is characterized by structural defects and is correlated with systolic dysfunction, the restrictive phenotype exhibits diastolic dysfunction. The molecular mechanisms are poorly understood. Target genes encode among others, the cardiac troponin subunits forming the main regulatory protein complex of the thin filament for muscle contraction. Here, we compare the molecular effects of two infantile de novo point mutations in TNNC1 (p.cTnC-G34S) and TNNI3 (p.cTnI-D127Y) leading to severe non-compaction and restrictive phenotypes, respectively. We used skinned cardiomyocytes, skinned fibers, and reconstituted thin filaments to measure the impact of the mutations on contractile function. We investigated the interaction of these troponin variants with actin and their inter-subunit interactions, as well as the structural integrity of reconstituted thin filaments. Both mutations exhibited similar functional and structural impairments, though the patients developed different phenotypes. Furthermore, the protein quality control system was affected, as shown for TnC-G34S using patient's myocardial tissue samples. The two troponin targeting agents levosimendan and green tea extract (-)-epigallocatechin-3-gallate (EGCg) stabilized the structural integrity of reconstituted thin filaments and ameliorated contractile function in vitro in some, but not all, aspects to a similar degree for both mutations.


Asunto(s)
Cardiomiopatías/genética , Mutación Missense , Miofibrillas/metabolismo , Troponina I/genética , Adenosina Trifosfatasas/metabolismo , Adulto , Calcio/metabolismo , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Catequina/análogos & derivados , Catequina/farmacología , Humanos , Lactante , Masculino , Microscopía Electrónica de Transmisión , Miofibrillas/efectos de los fármacos , Miofibrillas/ultraestructura , Sarcómeros/efectos de los fármacos , Sarcómeros/metabolismo , Índice de Severidad de la Enfermedad , Simendán/farmacología , Tropomiosina/metabolismo , Troponina I/metabolismo
2.
Cell Rep ; 43(4): 114093, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38602875

RESUMEN

The storage of fat within lipid droplets (LDs) of adipocytes is critical for whole-body health. Acute fatty acid (FA) uptake by differentiating adipocytes leads to the formation of at least two LD classes marked by distinct perilipins (PLINs). How this LD heterogeneity arises is an important yet unresolved cell biological problem. Here, we show that an unconventional integral membrane segment (iMS) targets the adipocyte specific LD surface factor PLIN1 to the endoplasmic reticulum (ER) and facilitates high-affinity binding to the first LD class. The other PLINs remain largely excluded from these LDs until FA influx recruits them to a second LD population. Preventing ER targeting turns PLIN1 into a soluble, cytoplasmic LD protein, reduces its LD affinity, and switches its LD class specificity. Conversely, moving the iMS to PLIN2 leads to ER insertion and formation of a separate LD class. Our results shed light on how differences in organelle targeting and disparities in lipid affinity of LD surface factors contribute to formation of LD heterogeneity.


Asunto(s)
Adipocitos , Diferenciación Celular , Retículo Endoplásmico , Gotas Lipídicas , Gotas Lipídicas/metabolismo , Adipocitos/metabolismo , Animales , Ratones , Retículo Endoplásmico/metabolismo , Perilipinas/metabolismo , Humanos , Células 3T3-L1 , Ácidos Grasos/metabolismo , Perilipina-1/metabolismo , Perilipina-2/metabolismo
3.
J Clin Virol ; 156: 105293, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36126395

RESUMEN

BACKGROUND: The diagnostic accuracy of the Elecsys® HCV Duo antigen-antibody combination immunoassay (Roche Diagnostics GmbH) was evaluated for the detection of hepatitis C virus (HCV) infection, versus commercially available comparators. METHODS: This multicenter study (August 2020-March 2021) assessed the specificity of the Elecsys HCV Duo immunoassay and comparator assays in blood donor and routine clinical laboratory samples; sensitivity was determined in confirmed HCV-positive samples and seroconversion panels. The Elecsys HCV Duo immunoassay was compared with the Monolisa HCV Ag-Ab ULTRA V2, Murex HCV Ag/Ab Combination and ARCHITECT HCV Ag assays, as well as nucleic acid testing (NAT). The antibody (anti-HCV) module of the Elecsys HCV Duo immunoassay was compared with the Elecsys Anti-HCV II, Alinity s Anti-HCV, ARCHITECT Anti-HCV and RIBA HCV 3.0 SIA assays. RESULTS: The specificity of the Elecsys HCV Duo immunoassay was 99.94% (95% confidence interval [CI], 99.89-99.97) and 99.92% (95% CI, 99.71-99.99) in blood donor (n = 20,634) and routine clinical laboratory samples (n = 2531), respectively. The specificity of the Elecsys HCV Duo immunoassay was similar or better than comparator assays. The sensitivity of the Elecsys HCV Duo immunoassay in confirmed HCV-positive samples (n = 257) was 99.6%. In seroconversion panels, the Elecsys HCV Duo immunoassay detected infections earlier (2.2-21.9 days) than all but one of the comparator assays and detected HCV 1.8 days later than NAT. CONCLUSIONS: The Elecsys HCV Duo immunoassay shows high diagnostic accuracy, reduces the diagnostic window, and could be used when NAT is not possible.


Asunto(s)
Hepatitis C , Ácidos Nucleicos , Hepacivirus , Anticuerpos contra la Hepatitis C , Humanos , Inmunoensayo , Sensibilidad y Especificidad
4.
Infect Dis Ther ; 10(4): 2381-2397, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34368915

RESUMEN

INTRODUCTION: We performed a multicentre evaluation of the Elecsys® Anti-SARS-CoV-2 immunoassay (Roche Diagnostics), an assay utilising a recombinant protein representing the nucleocapsid (N) antigen, for the in vitro qualitative detection of antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: Specificity was evaluated using serum/plasma samples from blood donors and routine diagnostic specimens collected before September 2019 (i.e., presumed negative for SARS-CoV-2-specific antibodies); sensitivity was evaluated using samples from patients with polymerase chain reaction (PCR)-confirmed SARS-CoV-2 infection. Point estimates and 95% confidence intervals (CIs) were calculated. Method comparison was performed versus commercially available assays. RESULTS: Overall specificity for the Elecsys Anti-SARS-CoV-2 immunoassay (n = 9575) was 99.85% (95% CI 99.75-99.92): blood donors (n = 6714; 99.82%), routine diagnostic specimens (n = 2861; 99.93%), pregnant women (n = 2256; 99.91%), paediatric samples (n = 205; 100.00%). The Elecsys Anti-SARS-CoV-2 immunoassay demonstrated significantly higher specificity versus LIAISON SARS-CoV-2 S1/S2 IgG (99.71% vs. 98.48%), EUROIMMUN Anti-SARS-CoV-2 IgG (100.00% vs. 94.87%), ADVIA Centaur SARS-CoV-2 Total (100.00% vs. 87.32%) and iFlash SARS-CoV-2 IgM (100.00% vs. 99.58%) assays, and comparable specificity to ARCHITECT SARS-CoV-2 IgG (99.75% vs. 99.65%) and iFlash SARS-CoV-2 IgG (100.00% vs. 100.00%) assays. Overall sensitivity for Elecsys Anti-SARS-CoV-2 immunoassay samples drawn at least 14 days post-PCR confirmation (n = 219) was 93.61% (95% CI 89.51-96.46). No statistically significant differences in sensitivity were observed between the Elecsys Anti-SARS-CoV-2 immunoassay versus EUROIMMUN Anti-SARS-CoV-2 IgG (90.32% vs. 95.16%) and ARCHITECT SARS-CoV-2 IgG (84.81% vs. 87.34%) assays. The Elecsys Anti-SARS-CoV-2 immunoassay showed significantly lower sensitivity versus ADVIA Centaur SARS-CoV-2 Total (85.19% vs. 95.06%) and iFlash SARS-CoV-2 IgG (86.25% vs. 93.75%) assays, but significantly higher sensitivity versus the iFlash SARS-CoV-2 IgM assay (86.25% vs. 33.75%). CONCLUSION: The Elecsys Anti-SARS-CoV-2 immunoassay demonstrated very high specificity and high sensitivity in samples collected at least 14 days post-PCR confirmation of SARS-CoV-2 infection, supporting its use to aid in determination of previous exposure to SARS-CoV-2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA