RESUMEN
There are critical periods in development when sensory experience directs the maturation of synapses and circuits within neocortex. We report that the critical period in mouse visual cortex has a specific molecular logic of gene regulation. Four days of visual deprivation regulated one set of genes during the critical period, and different sets before or after. Dark rearing perturbed the regulation of these age-specific gene sets. In addition, a 'common gene set', comprised of target genes belonging to a mitogen-activated protein (MAP) kinase signaling pathway, was regulated by vision at all ages but was impervious to prior history of sensory experience. Together, our results demonstrate that vision has dual effects on gene regulation in visual cortex and that sensory experience is needed for the sequential acquisition of age-specific, but not common, gene sets. Thus, a dynamic interplay between experience and gene expression drives activity-dependent circuit maturation.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Aprendizaje/fisiología , Proteínas del Tejido Nervioso/metabolismo , Corteza Visual/fisiología , Percepción Visual/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Western Blotting/métodos , Período Crítico Psicológico , Flavonoides/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Aprendizaje/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Análisis por Micromatrices/métodos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/fisiología , Proteínas del Tejido Nervioso/genética , Estimulación Luminosa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Privación Sensorial/fisiología , Visión Ocular , Corteza Visual/anatomía & histología , Corteza Visual/efectos de los fármacosRESUMEN
Nerve growth factor (NGF) mediates the survival and differentiation of neurons by stimulating the tyrosine kinase activity of the TrkA/NGF receptor. Here, we identify SHP-1 as a phosphotyrosine phosphatase that negatively regulates TrkA. SHP-1 formed complexes with TrkA at Y490, and dephosphorylated it at Y674/675. Expression of SHP-1 in sympathetic neurons induced apoptosis and TrkA dephosphorylation. Conversely, inhibition of endogenous SHP-1 with a dominant-inhibitory mutant stimulated basal tyrosine phosphorylation of TrkA, thereby promoting NGF-independent survival and causing sustained and elevated TrkA activation in the presence of NGF. Mice lacking SHP-1 had increased numbers of sympathetic neurons during the period of naturally occurring neuronal cell death, and when cultured, these neurons survived better than wild-type neurons in the absence of NGF. These data indicate that SHP-1 can function as a TrkA phosphatase, controlling both the basal and NGF-regulated level of TrkA activity in neurons, and suggest that SHP-1 regulates neuron number during the developmental cell death period by directly regulating TrkA activity.
Asunto(s)
Proteínas Portadoras/metabolismo , Supervivencia Celular , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Fosfatasas/metabolismo , Receptor trkA , Animales , Apoptosis/fisiología , Células Cultivadas , Activación Enzimática , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Endogámicos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Neuronas/citología , Células PC12 , Fosfolipasa C gamma , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 6 , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Sistema Nervioso Simpático/citología , Fosfolipasas de Tipo C/metabolismoRESUMEN
The precise period when experience shapes neural circuits in the mouse visual system is unknown. We used Arc induction to monitor the functional pattern of ipsilateral eye representation in cortex during normal development and after visual deprivation. After monocular deprivation during the critical period, Arc induction reflects ocular dominance (OD) shifts within the binocular zone. Arc induction also reports faithfully expected OD shifts in cat. Shifts towards the open eye and weakening of the deprived eye were seen in layer 4 after the critical period ends and also before it begins. These shifts include an unexpected spatial expansion of Arc induction into the monocular zone. However, this plasticity is not present in adult layer 6. Thus, functionally assessed OD can be altered in cortex by ocular imbalances substantially earlier and far later than expected.
Asunto(s)
Período Crítico Psicológico , Predominio Ocular/fisiología , Plasticidad Neuronal/fisiología , Visión Ocular/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Factores de Edad , Anestésicos Locales/farmacología , Animales , Animales Recién Nacidos , Mapeo Encefálico , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Densitometría/métodos , Inducción Enzimática/fisiología , Inducción Enzimática/efectos de la radiación , Enucleación del Ojo/métodos , Regulación de la Expresión Génica/fisiología , Regulación de la Expresión Génica/efectos de la radiación , Hibridación in Situ/métodos , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Estimulación Luminosa , Prolina/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/metabolismo , Estadísticas no Paramétricas , Tetrodotoxina/farmacología , Tritio/metabolismo , Corteza Visual/crecimiento & desarrollo , Vías Visuales/anatomía & histología , Vías Visuales/crecimiento & desarrolloRESUMEN
Mice lacking the K+ channel Kir4.1 or both connexin32 (Cx32) and Cx47 exhibit myelin-associated vacuoles, raising the possibility that oligodendrocytes, and the connexins they express, contribute to recycling the K+ evolved during neuronal activity. To study this possibility, we first examined the effect of neuronal activity on the appearance of vacuoles in mice lacking both Cx32 and Cx47. The size and number of myelin vacuoles was dramatically increased when axonal activity was increased, by either a natural stimulus (eye opening) or pharmacological treatment. Conversely, myelin vacuoles were dramatically reduced when axonal activity was suppressed. Second, we used genetic complementation to test for a relationship between the function of Kir4.1 and oligodendrocyte connexins. In a Cx32-null background, haploinsufficiency of either Cx47 or Kir4.1 did not affect myelin, but double heterozygotes developed vacuoles, consistent with the idea that oligodendrocyte connexins and Kir4.1 function in a common pathway. Together, these results implicate oligodendrocytes and their connexins as having critical roles in the buffering of K+ released during neuronal activity.