RESUMEN
More than half of the ~20,000 protein-encoding human genes have paralogs. Chemical proteomics has uncovered many electrophile-sensitive cysteines that are exclusive to subsets of paralogous proteins. Here we explore whether such covalent compound-cysteine interactions can be used to discover ligandable pockets in paralogs lacking the cysteine. Leveraging the covalent ligandability of C109 in the cyclin CCNE2, we substituted the corresponding residue in paralog CCNE1 to cysteine (N112C) and found through activity-based protein profiling that this mutant reacts stereoselectively and site-specifically with tryptoline acrylamides. We then converted the tryptoline acrylamide-CCNE1-N112C interaction into in vitro NanoBRET (bioluminescence resonance energy transfer) and in cellulo activity-based protein profiling assays capable of identifying compounds that reversibly inhibit both the N112C mutant and wild-type CCNE1:CDK2 (cyclin-dependent kinase 2) complexes. X-ray crystallography revealed a cryptic allosteric pocket at the CCNE1:CDK2 interface adjacent to N112 that binds the reversible inhibitors. Our findings, thus, show how electrophile-cysteine interactions mapped by chemical proteomics can extend the understanding of protein ligandability beyond covalent chemistry.
RESUMEN
Recent advances in the synthesis of sulfur(VI)-fluorides has enabled incredible growth in their application in biomolecular chemistry. This review aims to serve as a primer highlighting synthetic strategies toward a diversity of S(VI) fluorides and their application in chemical biology, bioconjugation, and medicinal chemistry.
Asunto(s)
Química Farmacéutica , Fluoruros , Fluoruros/química , Estructura Molecular , Azufre/química , Química ClicRESUMEN
Deubiquitinases (DUBs) are a family of >100 proteases that hydrolyze isopeptide bonds linking ubiquitin to protein substrates, often leading to reduced substrate degradation through the ubiquitin proteasome system. Deregulation of DUB activity has been implicated in many diseases, including cancer, neurodegeneration and auto-inflammation, and several have been recognized as attractive targets for therapeutic intervention. Ubiquitin-derived covalent activity-based probes (ABPs) provide a powerful tool for DUB activity profiling, but their large recognition element impedes cellular permeability and presents an unmet need for small molecule ABPs which can account for regulation of DUB activity in intact cells or organisms. Here, through comprehensive chemoproteomic warhead profiling, we identify cyanopyrrolidine (CNPy) probe IMP-2373 (12) as a small molecule pan-DUB ABP to monitor DUB activity in physiologically relevant live cells. Through proteomics and targeted assays, we demonstrate that IMP-2373 quantitatively engages more than 35â DUBs across a range of non-toxic concentrations in diverse cell lines. We further demonstrate its application to quantification of changes in intracellular DUB activity during pharmacological inhibition and during MYC deregulation in a model of B cell lymphoma. IMP-2373 thus offers a complementary tool to ubiquitin ABPs to monitor dynamic DUB activity in the context of disease-relevant phenotypes.
Asunto(s)
Bioensayo , Complejo de la Endopetidasa Proteasomal , Citoplasma , Ubiquitina , Enzimas DesubicuitinizantesRESUMEN
Quantitative mass spectrometry-based protein profiling is widely used to measure protein levels across different treatments or disease states, yet current mass spectrometry acquisition methods present distinct limitations. While data-independent acquisition (DIA) bypasses the stochastic nature of data-dependent acquisition (DDA), fragment spectra derived from DIA are often complex and challenging to deconvolve. In-line ion mobility separation (IMS) adds an additional dimension to increase peak capacity for more efficient product ion assignment. As a similar strategy to sequential window acquisition methods (SWATH), IMS-enabled DIA methods rival DDA methods for protein annotation. Here we evaluate IMS-DIA quantitative accuracy using stable isotope labeling by amino acids in cell culture (SILAC). Since SILAC analysis doubles the sample complexity, we find that IMS-DIA analysis is not sufficiently accurate for sensitive quantitation. However, SILAC precursor pairs share common retention and drift times, and both species cofragment to yield multiple quantifiable isotopic y-ion peak pairs. Since y-ion SILAC ratios are intrinsic for each quantified precursor, combined MS1 and y-ion ratio analysis significantly increases the total number of measurements. With increased sampling, we present DIA-SIFT ( SILAC Intrinsic Filtering Tool), a simple statistical algorithm to identify and eliminate poorly quantified MS1 and/or MS2 events. DIA-SIFT combines both MS1 and y-ion ratios, removes outliers, and provides more accurate and precise quantitation (<15% CV) without removing any proteins from the final analysis. Overall, pooled MS1 and MS2 quantitation increases sampling in IMS-DIA SILAC analyses for accurate and precise quantitation.
Asunto(s)
Aminoácidos/análisis , Espectrometría de Masas/métodos , Proteoma/análisis , Proteómica/métodos , Técnicas de Cultivo de Célula/métodos , Células HEK293 , Humanos , Marcaje Isotópico/métodos , Programas InformáticosRESUMEN
The histone deacetylase family comprises 18 enzymes that catalyze deacetylation of acetylated lysine residues; however, the specificity and substrate profile of each isozyme remains largely unknown. Due to transient enzyme-substrate interactions, conventional co-immunoprecipitation methods frequently fail to identify enzyme-specific substrates. Additionally, compensatory mechanisms often limit the ability of knockdown or chemical inhibition studies to achieve significant fold changes observed by acetylation proteomics methods. Furthermore, measured alterations do not guarantee a direct link between enzyme and substrate. Here we present a chemical crosslinking strategy that incorporates a photoreactive, non-natural amino acid, p-benzoyl-l-phenylalanine, into various positions of the structurally characterized isozyme histone deacetylase 8 (HDAC8). After covalent capture, co-immunoprecipitation, and mass spectrometric analysis, we identified a subset of HDAC8 substrates from human cell lysates, which were further validated for catalytic turnover. Overall, this chemical crosslinking approach identified novel HDAC8-specific substrates with high catalytic efficiency, thus presenting a general strategy for unbiased deacetylase substrate discovery.
Asunto(s)
Dominio Catalítico/genética , Dominio Catalítico/efectos de la radiación , Reactivos de Enlaces Cruzados/efectos de la radiación , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Procesos Fotoquímicos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Acetilación , Benzofenonas/metabolismo , Extractos Celulares , Histona Desacetilasas/química , Humanos , Lisina/química , Lisina/metabolismo , Fenilalanina/análogos & derivados , Fenilalanina/metabolismo , Proteómica , Proteínas Represoras/química , Reproducibilidad de los Resultados , Especificidad por SustratoRESUMEN
High mass accuracy, data-dependent acquisition is the current standard method in mass spectrometry-based peptide annotation and quantification. In high complexity samples, limited instrument scan speeds often result in under-sampling. In contrast, all-ion data-independent acquisition methods bypass precursor selection, alternating high and low collision energies to analyze product and precursor ions across wide mass ranges. Despite capturing data for all events, peptide annotation is limited by inadequate alignment algorithms or overlapping ions. Ion mobility separation can add an orthogonal analytical dimension, reducing ion interference to improve reproducibility, peak capacity, and peptide identifications to rival modern hybrid quadrupole orbitrap systems. Despite the advantages of ion mobility separation in complex proteomics analyses, there has been no quantitative measure of ion mobility resolution in a complex proteomic sample. Here, we present TWIMExtract, a data extraction tool to export defined slices of liquid chromatography/ion mobility/mass spectrometry (LC-IM-MS) data, providing a route to quantify ion mobility resolution from a commercial traveling-wave ion mobility time-of-flight mass spectrometer. Using standard traveling-wave ion mobility parameters (600 m/s, 40 V), 90% of the annotated peptides occupied just 23% of the ion mobility drift space, yet inclusion of ion mobility nearly doubled the overall peak capacity. Relative to fixed velocity traveling-wave ion mobility settings, ramping the traveling-wave velocity increased drift space occupancy, amplifying resolution by 16%, peak capacity by nearly 50%, and peptide/protein identifications by 40%. Overall, variable-velocity traveling-wave ion mobility-mass spectrometry significantly enhances proteomics analysis in all-ion fragmentation acquisition.
Asunto(s)
Espectrometría de Movilidad Iónica/métodos , Proteómica/métodos , Cromatografía Liquida , Células HeLa , Humanos , Péptidos/análisis , Proteínas/análisis , Reproducibilidad de los Resultados , Espectrometría de Masas en TándemRESUMEN
Cysteine residues are susceptible to oxidation to form S-sulfinyl (R-SO2 H) and S-sulfonyl (R-SO3 H) post-translational modifications. Here we present a simple bioconjugation strategy to label S-sulfinated proteins by using reporter-linked maleimides. After alkylation of free thiols with iodoacetamide, S-sulfinated cysteines react with maleimide to form a sulfone Michael adduct that remains stable under acidic conditions. Using this sequential alkylation strategy, we demonstrate differential S-sulfination across mouse tissue homogenates, as well as enhanced S-sulfination following pharmacological induction of endoplasmic reticulum stress, lipopolysaccharide stimulation, and inhibitors of the electron transport chain. Overall, this study reveals a broadened profile of maleimide reactivity across cysteine modifications, and outlines a simple method for profiling the physiological role of cysteine S-sulfination in disease.
Asunto(s)
Maleimidas/química , Sondas Moleculares/química , Proteínas/química , Proteínas/metabolismo , Ácidos Sulfínicos/metabolismo , Azufre/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Conformación ProteicaRESUMEN
Cysteine S-nitrosation and S-sulfination are naturally occurring post-translational modifications (PTMs) on proteins induced by physiological signals and redox stress. Here we demonstrate that sulfinic acids and nitrosothiols react to form a stable thiosulfonate bond, and leverage this reactivity using sulfinate-linked probes to enrich and annotate hundreds of endogenous S-nitrosated proteins. In physiological buffers, sulfinic acids do not react with iodoacetamide or disulfides, enabling selective alkylation of free thiols and site-specific analysis of S-nitrosation. In parallel, S-nitrosothiol-linked probes enable enrichment and detection of endogenous S-sulfinated proteins, confirming that a single sulfinic acid can react with a nitrosothiol to form a thiosulfonate linkage. Using this approach, we find that hydrogen peroxide addition increases S-sulfination of human DJ-1 (PARK7) at Cys106, whereas Cys46 and Cys53 are fully oxidized to sulfonic acids. Comparative gel-based analysis of different mouse tissues reveals distinct profiles for both S-nitrosation and S-sulfination. Quantitative proteomic analysis demonstrates that both S-nitrosation and S-sulfination are widespread, yet exhibit enhanced occupancy on select proteins, including thioredoxin, peroxiredoxins, and other validated redox active proteins. Overall, we present a direct, bidirectional method to profile select redox cysteine modifications based on the unique nucleophilicity of sulfinic acids.
Asunto(s)
Cisteína/química , Reacciones Cruzadas , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Compuestos Nitrosos/química , Proteínas Oncogénicas/química , Oxidación-Reducción , Proteína Desglicasa DJ-1 , Compuestos de Sulfhidrilo/química , Ácidos Sulfínicos/químicaRESUMEN
Understanding the mechanistic basis of prodrug delivery and activation is critical for establishing species-specific prodrug sensitivities necessary for evaluating preclinical animal models and potential drug-drug interactions. Despite significant adoption of prodrug methodologies for enhanced pharmacokinetics, functional annotation of prodrug activating enzymes is laborious and often unaddressed. Activity-based protein profiling (ABPP) describes an emerging chemoproteomic approach to assay active site occupancy within a mechanistically similar enzyme class in native proteomes. The serine hydrolase enzyme family is broadly reactive with reporter-linked fluorophosphonates, which have shown to provide a mechanism-based covalent labeling strategy to assay the activation state and active site occupancy of cellular serine amidases, esterases, and thioesterases. Here we describe a modified ABPP approach using direct substrate competition to identify activating enzymes for an ethyl ester prodrug, the influenza neuraminidase inhibitor oseltamivir. Substrate-competitive ABPP analysis identified carboxylesterase 1 (CES1) as an oseltamivir-activating enzyme in intestinal cell homogenates. Saturating concentrations of oseltamivir lead to a four-fold reduction in the observed rate constant for CES1 inactivation by fluorophosphonates. WWL50, a reported carbamate inhibitor of mouse CES1, blocked oseltamivir hydrolysis activity in human cell homogenates, confirming CES1 is the primary prodrug activating enzyme for oseltamivir in human liver and intestinal cell lines. The related carbamate inhibitor WWL79 inhibited mouse but not human CES1, providing a series of probes for analyzing prodrug activation mechanisms in different preclinical models. Overall, we present a substrate-competitive activity-based profiling approach for broadly surveying candidate prodrug hydrolyzing enzymes and outline the kinetic parameters for activating enzyme discovery, ester prodrug design, and preclinical development of ester prodrugs.
Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Inhibidores Enzimáticos/farmacología , Ésteres/farmacología , Oseltamivir/farmacología , Profármacos/farmacología , Animales , Línea Celular , Humanos , Hidrólisis , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Cinética , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Especificidad por SustratoRESUMEN
Cysteine is a uniquely reactive amino acid, capable of undergoing both nucleophlilic and oxidative post-translational modifications. One such oxidation reaction involves the covalent modification of cysteine via the gaseous second messenger nitric oxide (NO), termed S-nitrosylation (SNO). This dynamic post-translational modification is involved in the redox regulation of proteins across all phylogenic kingdoms. In mammals, calcium-dependent activation of NO synthase triggers the local release of NO, which activates nearby guanylyl cyclases and cGMP-dependent pathways. In parallel, diffusible NO can locally modify redox active cellular thiols, functionally modulating many redox sensitive enzymes. Aberrant SNO is implicated in the pathology of many diseases, including neurodegeneration, inflammation, and stroke. In this review, we discuss current methods to label sites of SNO for biochemical analysis. The most popular method involves a series of biochemical steps to mask free thiols followed by selective nitrosothiol reduction and capture. Other emerging methods include mechanism-based phosphine probes and mercury enrichment chemistry. By bridging new enrichment approaches with high-resolution mass spectrometry, large-scale analysis of protein nitrosylation has highlighted new pathways of oxidative regulation.
Asunto(s)
Bioquímica/métodos , Animales , Ácido Ascórbico/metabolismo , Humanos , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/metabolismo , Nitrosación , Compuestos de Sulfhidrilo/metabolismoRESUMEN
More than half of the ~20,000 protein-encoding human genes have at least one paralog. Chemical proteomics has uncovered many electrophile-sensitive cysteines that are exclusive to a subset of paralogous proteins. Here, we explore whether such covalent compound-cysteine interactions can be used to discover ligandable pockets in paralogs that lack the cysteine. Leveraging the covalent ligandability of C109 in the cyclin CCNE2, we mutated the corresponding residue in paralog CCNE1 to cysteine (N112C) and found through activity-based protein profiling (ABPP) that this mutant reacts stereoselectively and site-specifically with tryptoline acrylamides. We then converted the tryptoline acrylamide-N112C-CCNE1 interaction into a NanoBRET-ABPP assay capable of identifying compounds that reversibly inhibit both N112C- and WT-CCNE1:CDK2 complexes. X-ray crystallography revealed a cryptic allosteric pocket at the CCNE1:CDK2 interface adjacent to N112 that binds the reversible inhibitors. Our findings thus provide a roadmap for leveraging electrophile-cysteine interactions to extend the ligandability of the proteome beyond covalent chemistry.
RESUMEN
Chemical modulation of proteins enables a mechanistic understanding of biology and represents the foundation of most therapeutics. However, despite decades of research, 80% of the human proteome lacks functional ligands. Chemical proteomics has advanced fragment-based ligand discovery toward cellular systems, but throughput limitations have stymied the scalable identification of fragment-protein interactions. We report proteome-wide maps of protein-binding propensity for 407 structurally diverse small-molecule fragments. We verified that identified interactions can be advanced to active chemical probes of E3 ubiquitin ligases, transporters, and kinases. Integrating machine learning binary classifiers further enabled interpretable predictions of fragment behavior in cells. The resulting resource of fragment-protein interactions and predictive models will help to elucidate principles of molecular recognition and expedite ligand discovery efforts for hitherto undrugged proteins.
Asunto(s)
Descubrimiento de Drogas , Aprendizaje Automático , Proteómica , Bibliotecas de Moléculas Pequeñas , Humanos , Ligandos , Unión Proteica , Proteoma/metabolismo , Proteómica/métodos , Bibliotecas de Moléculas Pequeñas/química , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Human protein isoprenylcysteine carboxyl methyltransferase (hIcmt) is the enzyme responsible for the α-carboxyl methylation of the C-terminal isoprenylated cysteine of CaaX proteins, including Ras proteins. This specific posttranslational methylation event has been shown to be important for cellular transformation by oncogenic Ras isoforms. This finding led to interest in hIcmt inhibitors as potential anti-cancer agents. Previous analog studies based on N-acetyl-S-farnesylcysteine identified two prenylcysteine-based low micromolar inhibitors (1a and 1b) of hIcmt, each bearing a phenoxyphenyl amide modification. In this study, a focused library of analogs of 1a and 1b was synthesized and screened versus hIcmt, delineating structural features important for inhibition. Kinetic characterization of the most potent analogs 1a and 1b established that both inhibitors exhibited mixed-mode inhibition and that the competitive component predominated. Using the Cheng-Prusoff method, the K(i) values were determined from the IC(50) values. Analog 1a has a K(IC) of 1.4±0.2µM and a K(IU) of 4.8±0.5µM while 1b has a K(IC) of 0.5±0.07µM and a K(IU) of 1.9±0.2µM. Cellular evaluation of 1b revealed that it alters the subcellular localization of GFP-KRas, and also inhibits both Ras activation and Erk phosphorylation in Jurkat cells.
Asunto(s)
Amidas/química , Cisteína/análogos & derivados , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteína Metiltransferasas/antagonistas & inhibidores , Amidas/síntesis química , Amidas/farmacología , Cisteína/química , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/síntesis química , Humanos , Células Jurkat , Cinética , Fosforilación , Proteína Metiltransferasas/metabolismo , Relación Estructura-Actividad , Proteínas ras/metabolismoRESUMEN
LynF prenylates, but the prenyl migrates: Schmidt and co-workers have demonstrated that LynF from Lyngbya aestuarii is a reverse O-prenyl transferase. However, a forward C-prenylated product is obtained through a non-enzymatic Claisen rearrangement. The elucidation of this unprecedented two-step process is a significant contribution to our understanding of the biosynthesis of complex macrocyclic peptides.
Asunto(s)
Péptidos Cíclicos/química , PrenilaciónRESUMEN
Human isoprenylcysteine carboxyl methyltransferase (hIcmt) is a promising anticancer target as it is important for the post-translational modification of oncogenic Ras proteins. We herein report the synthesis and biochemical activity of 41 farnesyl-cysteine based analogs versus hIcmt. We have demonstrated that the amide linkage of a hIcmt substrate can be replaced by a sulfonamide bond to achieve hIcmt inhibition. The most potent sulfonamide-modified farnesyl cysteine analog was 6ag with an IC(50) of 8.8±0.5 µM for hIcmt.
Asunto(s)
Cisteína/análogos & derivados , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteína Metiltransferasas/antagonistas & inhibidores , Sitios de Unión , Cisteína/síntesis química , Cisteína/química , Cisteína/farmacología , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Procesamiento Proteico-PostraduccionalRESUMEN
Deubiquitinating enzymes (DUBs) function to remove or cleave ubiquitin from post-translationally modified protein substrates. There are about 100 known DUBs in the proteome, and their dysregulation has been implicated a number of disease states, but the specific function of many subclass members remains poorly understood. Activity-based probes (ABPs) react covalently with an active site residue to report on specific enzyme activity, and thus represent a powerful method to evaluate cellular and physiological enzyme function and dynamics. Ubiquitin-based ABPs, such as HA-Ub-VME, an epitope-tagged ubiquitin carrying a C-terminal reactive warhead, are the leading tool for "DUBome" activity profiling. However, these probes are generally cell membrane impermeable, limiting their use to isolated enzymes or lysates. Development of cell-permeable ABPs would allow engagement of DUB enzymes directly within the context of an intact live cell or organism, refining our understanding of physiological and pathological function, and greatly enhancing opportunities for translational research, including target engagement, imaging and biomarker discovery. This mini-review discusses recent developments in small molecule activity-based probes that target DUBs in live cells, and the unique applications of cell-permeable DUB activity-based probes vs. their traditional ubiquitin-based counterparts.
RESUMEN
The mitochondrial acyl carrier protein (human ACPM, yeast Acp1) is an essential mitochondrial protein. Through binding of nascent acyl chains on the serine (S112)-bound 4'-phosphopantetheine (4'-PP) cofactor, ACPM is involved in mitochondrial fatty acid synthesis and lipoic acid biogenesis. Recently, yeast Acp1 was found to interact with several mitochondrial complexes, including the iron-sulfur (Fe-S) cluster biosynthesis and respiratory complexes, via the binding to LYRM proteins, a family of proteins involved in assembly/stability of complexes. Importantly, the interaction of LYRM proteins with Acp1 was shown to be essential in maintaining integrity of mitochondrial complexes. In human, recent structures show that ACPM binding to LYRM proteins involves acyl chains attached to the 4'-PP cofactor. Here, we performed an detailed characterization of the mitochondrial interactome of human ACPM by mass spectrometry (MS) and demonstrate the crucial role of the 4'-PP cofactor in most of ACPM interactions. Specifically, we show that ACPM interacts with endogenous Fe-S cluster complex components through binding of the LYRM protein ISD11/LYRM4. Using knockdown experiments, we further determine that ACPM is essential for the stability of mitochondrial respiratory complexes I, II and III, as well as the Fe-S cluster biosynthesis complex. Finally, using native MS and a top-down MS approach, we show that C14, C16 and C18 3-keto-acyl chains on ACPM are implicated in binding to ISD11 through analysis of the recombinant ACPM-ISD11 complex. Taken together, our data provide novel understanding of the role of 4'-PP- and long acyl chains-dependent interactions in human ACPM function.
RESUMEN
In this issue of Cell Chemical Biology, Grossman et al. (2017) disclose a chemoproteomics-enabled strategy to identify the cysteine-reactive target(s) of the anti-cancer natural product withaferin A and then screen a cysteine-reactive fragment library to discover a covalent ligand for the same target.
Asunto(s)
Productos Biológicos , Cisteína , LigandosRESUMEN
Activity-based protein profiling (ABPP) has revolutionized the discovery and optimization of active-site ligands across distinct enzyme families, providing a robust platform for in-class selectivity profiling. Nonetheless, this approach is less straightforward for profiling reversible inhibitors and does not access proteins outside the ABPP probe's target profile. While the active-site competitive acyl protein thioesterase 2 inhibitor ML349 (Ki = 120 nM) is highly selective within the serine hydrolase enzyme family, it could still interact with other cellular targets. Here we present a chemoproteomic workflow to enrich and profile candidate ML349-binding proteins. In human cell lysates, biotinylated-ML349 enriches a recurring set of proteins, including metabolite kinases and flavin-dependent oxidoreductases that are potentially enhanced by avidity-driven multimeric interactions. Confirmatory assays by native mass spectrometry and fluorescence polarization quickly rank-ordered these weak off-targets, providing justification to explore ligand interactions and stoichiometry beyond ABPP.
RESUMEN
The multidomain scaffolding protein Scribble (Scrib) organizes key signaling complexes to specify basolateral cell polarity and suppress aberrant growth. In many human cancers, genetically normal Scrib mislocalizes from cell-cell junctions to the cytosol, correlating with enhanced growth signaling and malignancy. Here we confirm that expression of the epithelial-to-mesenchymal transcription factor (EMT-TF) Snail in benign epithelial cells leads to Scrib displacement from the plasma membrane, mimicking the mislocalization observed in aggressive cancers. Upon further examination, Snail promotes a transcriptional program that targets genes in the palmitoylation cycle, repressing many protein acyl transferases and elevating expression and activity of protein acyl thioesterase 2 (APT2). APT2 isoform-selective inhibition or knockdown rescued Scrib membrane localization and palmitoylation while attenuating MEK activation. Overall, inhibiting APT2 restores balance to the Scrib palmitoylation cycle, promoting membrane re-localization and growth attenuation. These findings emphasize the importance of S-palmitoylation as a post-translational gatekeeper of cell polarity-mediated tumor suppression.