Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Biol Chem ; 285(9): 6401-11, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20037161

RESUMEN

Satellite cells/myoblasts account for the majority of muscle regenerative potential in response to injury and muscular adaptation to exercise. Although the ability to influence this process would provide valuable benefits for treating a variety of patients suffering from muscle loss, the regulatory mechanisms of myogenesis are not completely understood. We have tested the hypothesis that transforming growth factor-beta-activated kinase 1 (TAK1) is an important regulator of skeletal muscle formation. TAK1 is expressed in proliferating C2C12 myoblasts, and its levels are reduced upon differentiation of myoblasts into myotubes. In vivo, TAK1 is predominantly expressed in developing skeletal muscle of young mice. However, the expression of TAK1 was significantly up-regulated in regenerating skeletal muscle of adult mice. Overexpression of a dominant negative mutant of TAK1 or knockdown of TAK1 inhibited the proliferation and differentiation of C2C12 myoblasts. TAK1 was required for the expression of myogenic regulatory factors in differentiating myoblasts. Genetic ablation of TAK1 also inhibited the MyoD-driven transformation of mouse embryonic fibroblasts into myotubes. Inhibition of TAK1 suppressed the differentiation-associated activation of p38 mitogen-activated protein kinase (MAPK) and Akt kinase. Overexpression of a constitutively active mutant of MAPK kinase 6 (MKK6, an upstream activator of p38 MAPK) but not constitutive active Akt restored the myogenic differentiation in TAK1-deficient mouse embryonic fibroblasts. Insulin growth factor 1-induced myogenic differentiation was also found to involve TAK1. Collectively, our results suggest that TAK1 is an important upstream regulator of skeletal muscle cell differentiation.


Asunto(s)
Diferenciación Celular , Quinasas Quinasa Quinasa PAM/fisiología , Desarrollo de Músculos , Músculo Esquelético/crecimiento & desarrollo , Factores de Edad , Animales , Células Cultivadas , Fibroblastos/citología , Fibroblastos/ultraestructura , Quinasas Quinasa Quinasa PAM/genética , Ratones , Fibras Musculares Esqueléticas/citología , Músculo Esquelético/citología , Mioblastos/citología , Proteínas Quinasas/metabolismo , Regeneración
2.
Hum Mol Genet ; 18(14): 2584-98, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19401296

RESUMEN

Duchenne muscular dystrophy (DMD) is a fatal X-linked genetic disorder of skeletal muscle caused by mutation in dystrophin gene. Although the degradation of skeletal muscle extracellular matrix, inflammation and fibrosis are the common pathological features in DMD, the underlying mechanisms remain poorly understood. In this study, we have investigated the role and the mechanisms by which increased levels of matrix metalloproteinase-9 (MMP-9) protein causes myopathy in dystrophin-deficient mdx mice. The levels of MMP-9 but not tissue inhibitor of MMPs were drastically increased in skeletal muscle of mdx mice. Besides skeletal muscle, infiltrating macrophages were found to contribute significantly to the elevated levels of MMP-9 in dystrophic muscle. In vivo administration of a nuclear factor-kappa B inhibitory peptide, NBD, blocked the expression of MMP-9 in dystrophic muscle of mdx mice. Deletion of Mmp9 gene in mdx mice improved skeletal muscle structure and functions and reduced muscle injury, inflammation and fiber necrosis. Inhibition of MMP-9 increased the levels of cytoskeletal protein beta-dystroglycan and neural nitric oxide synthase and reduced the amounts of caveolin-3 and transforming growth factor-beta in myofibers of mdx mice. Genetic ablation of MMP-9 significantly augmented the skeletal muscle regeneration in mdx mice. Finally, pharmacological inhibition of MMP-9 activity also ameliorated skeletal muscle pathogenesis and enhanced myofiber regeneration in mdx mice. Collectively, our study suggests that the increased production of MMP-9 exacerbates dystrophinopathy and MMP-9 represents as one of the most promising therapeutic targets for the prevention of disease progression in DMD.


Asunto(s)
Regulación hacia Abajo , Metaloproteinasa 9 de la Matriz/metabolismo , Músculo Esquelético/enzimología , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/enzimología , Distrofia Muscular de Duchenne/fisiopatología , Animales , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Humanos , Técnicas In Vitro , Metaloproteinasa 9 de la Matriz/genética , Inhibidores de la Metaloproteinasa de la Matriz , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología
3.
J Immunol ; 182(4): 2439-48, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19201899

RESUMEN

TWEAK, TNF-like weak inducer of apoptosis, is a relatively recently identified proinflammatory cytokine that functions through binding to Fn14 receptor in target cells. Although TWEAK has been shown to modulate several biological responses, the TWEAK-induced signaling pathways remain poorly understood. In this study, we tested the hypothesis that TAK1 (TGF-beta-activated kinase 1) is involved in TWEAK-induced activation of NF-kappaB and MAPK and expression of proinflammatory protein. TWEAK increased the phosphorylation and kinase activity of TAK1 in cultured myoblast and fibroblast cells. The activation of NF-kappaB was significantly inhibited in TAK1-deficient (TAK1(-/-)) mouse embryonic fibroblasts (MEF) compared with wild-type MEF. Deficiency of TAK1 also inhibited the TWEAK-induced activation of IkappaB kinase and the phosphorylation and degradation of IkappaBalpha protein. However, there was no difference in the levels of p100 protein in TWEAK-treated wild-type and TAK1(-/-) MEF. Furthermore, TWEAK-induced transcriptional activation of NF-kappaB was significantly reduced in TAK1(-/-) MEF and in C2C12 myoblasts transfected with a dominant-negative TAK1 or TAK1 short interfering RNA. TAK1 was also required for the activation of AP-1 in response to TWEAK. Activation of JNK1 and p38 MAPK, but not ERK1/2 or Akt kinase, was significantly inhibited in TAK1(-/-) MEF compared with wild-type MEF upon treatment with TWEAK. TWEAK-induced expression of proinflammatory genes such as MMP-9, CCL-2, and VCAM-1 was also reduced in TAK1(-/-) MEF compared with wild-type MEF. Furthermore, the activation of NF-kappaB and the expression of MMP-9 in response to TWEAK involved the upstream activation of Akt kinase. Collectively, our study demonstrates that TAK1 and Akt are the important components of TWEAK-induced proinflammatory signaling and gene expression.


Asunto(s)
Activación Enzimática/inmunología , Expresión Génica/inmunología , Inflamación/metabolismo , Quinasas Quinasa Quinasa PAM/inmunología , Transducción de Señal/inmunología , Factores de Necrosis Tumoral/metabolismo , Animales , Western Blotting , Células Cultivadas , Citocina TWEAK , Ensayo de Cambio de Movilidad Electroforética , Fibroblastos/inmunología , Fibroblastos/metabolismo , Inmunoprecipitación , Inflamación/inmunología , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/inmunología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mioblastos/inmunología , Mioblastos/metabolismo , FN-kappa B/inmunología , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/inmunología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción AP-1/inmunología , Factor de Transcripción AP-1/metabolismo , Factores de Necrosis Tumoral/inmunología
4.
J Neurosci ; 28(44): 11409-20, 2008 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-18971483

RESUMEN

Although PDK1 regulates several signaling pathways that respond to neurotrophins, direct evidence for its involvement in neurotrophin-mediated survival has not yet been reported. Here we show high neuronal expression of active PDK1 in the rat cortex and hippocampus at the developmental stages with pronounced dependence on extracellular survival signals. Also, in cultured cortical neurons from newborn rats, BDNF resulted in PDK1- and extracellular signal-regulated kinase-1/2 (ERK1/2)-mediated activation of their direct target, the p90 ribosomal S6 kinase 1/2 (RSK1/2). In trophic-deprived cortical neurons, knockdown of endogenous PDK1 attenuated the antiapoptotic survival response to 10 ng/ml BDNF, whereas an overexpressed active mutant form of PDK1 reduced apoptosis. The neuroprotection by BDNF or active PDK1 required RSK1/2. Conversely, PDK1 knockdown reversed the survival effects of combining the overexpressed RSK1 with a low, subprotective BDNF concentration of 2 ng/ml. Likewise, the protection by the overexpressed, active PDK1 was enhanced by coexpression of an active RSK1 mutant. Consistent with the observations that in BDNF-stimulated neurons RSK1/2 activation required both PDK1 and ERK1/2, ERK1/2 knockdown removed BDNF-mediated survival. Selective activation of ERK1/2 with an overexpressed active mutant form of MKK1 resulted in RSK1/2- and PDK1-dependent neuroprotection. Finally, at subprotective plasmid DNA dosage, overexpression of the active MKK1 and PDK1 mutants produced synergistic effect on survival. Our findings indicate a critical role for PDK1-RSK1/2 signaling in BDNF-mediated neuronal survival. Thus, the PDK1 is indispensable for the antiapoptotic effects of the ERK1/2 pathway offering previously unrecognized layer of survival signal processing and integration.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Neuronas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Supervivencia Celular/fisiología , Células Cultivadas , Humanos , Ratones , Neuronas/citología , Proteínas Serina-Treonina Quinasas/genética , Ratas
5.
J Neurochem ; 105(6): 2286-99, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18315559

RESUMEN

In post-mitotic neurons, the mechanisms of the apoptotic checkpoint that is activated by DNA damage remain unclear. Here we show that in cultured cortical neurons, the DNA damaging agent camptothecin (CPT) reduced transcription of rRNA and disrupted nucleolar staining for B23/nucleophosmin suggesting DNA damage-induced nucleolar stress. Although CPT activated the pro-apoptotic protein p53, the CPT-induced nucleolar stress was unaffected by p53 inhibition. In addition, brain-derived neurotrophic factor-mediated protection from CPT-induced apoptosis prevented neither nucleolar stress nor p53 activation. Therefore, inhibition of rRNA transcription might be upstream of the pro-apoptotic p53 activity. Indeed, short hairpin RNA-mediated inhibition of a RNA-Polymerase-I co-factor, transcription initiation factor IA, attenuated rRNA transcription causing nucleolar stress and p53-dependent neuronal apoptosis. The protein synthesis inhibitor cycloheximide blocked apoptosis that was induced by over-expressed shTIF-IA or active form of p53. Also, the general transcription inhibitor actinomycin D triggered nucleolar stress and activated p53. However, it did not induce apoptosis except at the low concentration of 0.05 microg/mL with stronger inhibitory activity against nucleolar than extranucleolar transcription. Hence, nucleolar stress-activated apoptosis requires extranucleolar transcription. This study identifies the nucleoli of post-mitotic neurons as sensors of DNA damage coupling reduced rRNA transcription to p53-mediated apoptosis that requires de novo expression of protein-coding genes. Thus, rDNA selectivity of DNA damage may determine its ability to induce neuronal apoptosis.


Asunto(s)
Apoptosis/fisiología , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Neuronas/metabolismo , Transcripción Genética/fisiología , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Secuencia de Bases , Camptotecina/toxicidad , Nucléolo Celular/efectos de los fármacos , Células Cultivadas , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Daño del ADN/fisiología , Ratones , Datos de Secuencia Molecular , Neuronas/efectos de los fármacos , Interferencia de ARN , ARN Interferente Pequeño/fisiología , Ratas , Ratas Sprague-Dawley , Transcripción Genética/efectos de los fármacos
6.
J Cell Biol ; 188(6): 833-49, 2010 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-20308426

RESUMEN

Skeletal muscle atrophy occurs in a variety of clinical settings, including cachexia, disuse, and denervation. Inflammatory cytokines have been shown to be mediators of cancer cachexia; however, the role of cytokines in denervation- and immobilization-induced skeletal muscle loss remains unknown. In this study, we demonstrate that a single cytokine, TNF-like weak inducer of apoptosis (TWEAK), mediates skeletal muscle atrophy that occurs under denervation conditions. Transgenic expression of TWEAK induces atrophy, fibrosis, fiber-type switching, and the degradation of muscle proteins. Importantly, genetic ablation of TWEAK decreases the loss of muscle proteins and spared fiber cross-sectional area, muscle mass, and strength after denervation. Expression of the TWEAK receptor Fn14 (fibroblast growth factor-inducible receptor 14) and not the cytokine is significantly increased in muscle upon denervation, demonstrating an unexpected inside-out signaling pathway; the receptor up-regulation allows for TWEAK activation of nuclear factor kappaB, causing an increase in the expression of the E3 ubiquitin ligase MuRF1. This study reveals a novel mediator of skeletal muscle atrophy and indicates that the TWEAK-Fn14 system is an important target for preventing skeletal muscle wasting.


Asunto(s)
Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Factores de Necrosis Tumoral/metabolismo , Animales , Citocina TWEAK , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Desnervación Muscular , Músculo Esquelético/inervación , Atrofia Muscular/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptor de TWEAK , Factores de Necrosis Tumoral/deficiencia , Factores de Necrosis Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA