Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cell Biochem ; 125(6): e30558, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38577900

RESUMEN

The complex impacts of prolonged morphine exposure continue to be a significant focus in the expanding area of addiction studies. This research investigates the effectiveness of a combined treatment using Cabergoline and Mdivi-1 to counteract the neuroadaptive changes caused by in vitro morphine treatment. The impact of Methadone, Cabergoline, and a combination of Cabergoline and Mdivi-1 on the cellular and molecular responses associated with Morphine-induced changes was studied in human Neuroblastoma (SK-N-MC) and Glioblastoma (U87-MG) cell lines that were exposed to prolong Morphine treatment. Cabergoline and Mdivi-1 combined treatment effectively influenced the molecular alterations associated with neuroadaptation in chronic morphine-exposed neural cells. This combination therapy normalized autophagy and reduced oxidative stress by enhancing total-antioxidant capacity, mitigating apoptosis, restoring BDNF expression, and balancing apoptotic elements. Our research outlines morphine's dual role in modulating mitochondrial dynamics via the dysregulation of the autophagy-apoptosis axis. This emphasizes the significant involvement of DRP1 activity in neurological adaptation processes, as well as disturbances in the dopaminergic pathway during in vitro chronic exposure to morphine in neural cells. This study proposes a novel approach by recommending the potential effectiveness of combining Cabergoline and Mdivi-1 to modulate the neuroadaptations caused by morphine. Additionally, we identified BDNF and PCNA in neural cells as potential neuroprotective markers for assessing the effectiveness of drugs against opioid toxicity, emphasizing the need for further validation. The study uncovers diverse effects observed in pretreated morphine glioblastoma cells under treatment with Cabergoline and methadone. This highlights the potential for new treatments in the DRD2 pathway and underscores the importance of investigating the interplay between autophagy and apoptosis to advance research in managing cancer-related pain. The study necessitates an in-depth investigation into the relationship between autophagy and apoptosis, with a specific emphasis on protein interactions and the dynamics of cell signaling.


Asunto(s)
Apoptosis , Autofagia , Cabergolina , Morfina , Quinazolinonas , Humanos , Autofagia/efectos de los fármacos , Apoptosis/efectos de los fármacos , Morfina/farmacología , Cabergolina/farmacología , Línea Celular Tumoral , Quinazolinonas/farmacología , Estrés Oxidativo/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo
2.
Clin Genet ; 104(1): 121-126, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36896672

RESUMEN

PKDCC encodes a component of Hedgehog signalling required for normal chondrogenesis and skeletal development. Although biallelic PKDCC variants have been implicated in rhizomelic shortening of limbs with variable dysmorphic features, this association was based on just two patients. In this study, data from the 100 000 Genomes Project was used in conjunction with exome sequencing and panel-testing results accessed via international collaboration to assemble a cohort of eight individuals from seven independent families with biallelic PKDCC variants. The allelic series included six frameshifts, a previously described splice-donor site variant and a likely pathogenic missense variant observed in two families that was supported by in silico structural modelling. Database queries suggested that the prevalence of this condition is between 1 of 127 and 1 of 721 in clinical cohorts with skeletal dysplasia of unknown aetiology. Clinical assessments, combined with data from previously published cases, indicate a predominantly upper limb involvement. Micrognathia, hypertelorism and hearing loss appear to be commonly co-occurring features. In conclusion, this study strengthens the link between biallelic inactivation of PKDCC and rhizomelic limb-shortening and will enable clinical testing laboratories to better interpret variants in this gene.


Asunto(s)
Enanismo , Osteocondrodisplasias , Humanos , Proteínas Hedgehog , Osteocondrodisplasias/patología , Prevalencia , Sitios de Empalme de ARN
3.
Artículo en Inglés | MEDLINE | ID: mdl-35770390

RESUMEN

BACKGROUND: Psoriasis is a chronic inflammatory autoimmune disease that is considered linked to genetic and environmental factors such as stress. Since the neurotransmitter dopamine has a close association with stress configuration, it can be a candidate for relieving psoriasis representation. In addition to the CNS, immune cells can play a decisive role in regulating immune functions through dopamine synthesis and the expression of its receptors. Altered response of immune cells to dopamine as well as a distorted expression of dopamine receptors (DRs) in immune cells have been reported in some chronic inflammatory conditions. OBJECTIVE: This study aims the evaluation of dopamine receptor (DR1-DR5) gene expression in mononuclear blood cells of psoriatic patients in comparison with normal individuals. METHODS: We isolated peripheral mononuclear cells (PBMCs) from blood samples followed by total RNA extraction, cDNA synthesis, and real-time PCR using specific primer pairs. RESULTS: We found that all types of DRs are expressed in the PBMCs of normal and psoriatic individuals. We also concluded that compared to controls, DR2 and DR4 were overexpressed in psoriasis patients while DR3 was low-expressed. CONCLUSION: Increased expression of DR2 and DR4 along with decreased expression of DR3 in PBMCs of psoriasis patients not only provide new insight into the pathogenesis of psoriasis but may also be effective in designing future therapeutic strategies attributable to psoriasis.


Asunto(s)
Dopamina , Psoriasis , Humanos , Receptores Dopaminérgicos/genética , Psoriasis/genética
4.
J Alzheimers Dis ; 85(2): 645-665, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34864659

RESUMEN

BACKGROUND: Late-onset Alzheimer's disease (LOAD) is associated with many environmental and genetic factors. The effect of systemic inflammation on the pathogenesis of neurodegenerative diseases such as AD has been strongly suggested. T helper cells (Th) are one of the important components of the immune system and can easily infiltrate the brain in pathological conditions. The development of each Th-subset depends on the production of unique cytokines and their main regulator. OBJECTIVE: This study aimed to compare the mRNA levels of Th-related genes derived from peripheral blood mononuclear cells of LOAD patients with control. Also, the identification of the most important Th1/Th2 genes and downstream pathways that may be involved in the pathogenesis of AD was followed by computational approaches. METHODS: This study involved 30 patients with LOAD and 30 non-demented controls. The relative expression of T-cell cytokines (IFN-γ, TNF-α, IL-4, and IL-5) and transcription factors (T-bet and GATA-3) were assessed using Real-time PCR. Additionally, protein-protein interaction (PPI) was investigated by gene network construction. RESULTS: A significant decrease at T-bet, IFN-γ, TNF-α, and GATA-3 mRNA levels was detected in the LOAD group, compared to the controls. However, there was no significant difference in IL-4 or IL-5 mRNA levels. Network analysis revealed a list of the highly connected protein (hubs) related to mitogen-activated protein kinase (MAPK) signaling and Th17 cell differentiation pathways. CONCLUSION: The findings point to a molecular dysregulation in Th-related genes, which can promising in the early diagnosis or targeted interventions of AD. Furthermore, the PPI analysis showed that upstream off-target stimulation may involve MAPK cascade activation and Th17 axis induction.


Asunto(s)
Enfermedad de Alzheimer/genética , Leucocitos Mononucleares/metabolismo , Células Th17/metabolismo , Edad de Inicio , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/patología , Estudios de Casos y Controles , Femenino , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Regulación de la Expresión Génica , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Células Th17/patología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
5.
Eur J Med Genet ; 64(3): 104146, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33497766

RESUMEN

NGLY1 deficiency is a recently described autosomal recessive disorder, involved in deglycosylation of proteins, and for that reason grouped as the congenital disorders of deglycosylation together with the lysosomal storage disorders. The typical phenotype is characterized by intellectual disability, liver malfunctioning, muscular hypotonia, involuntary movements, and decreased or absent tear production. Liver biopsy demonstrates vacuolar amorphous cytoplasmic storage material. NGLY1 deficiency is caused by bi-allelic variants in NGLY1 which catalyzes protein deglycosylation. We describe five patients from two families with NGLY1 deficiency due to homozygosity for two novel NGLY1 variants, and compare their findings to those of earlier reported patients. The typical features of the disorder are present in a limited way, and there is intra-familial variability. In addition in one of the families the muscle atrophy and posture abnormalities are marked. These can be explained either as variability of the phenotype or as sign of slowly progression of features as the present affected individuals are older than earlier reported patients.


Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Mutación , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Adolescente , Adulto , Trastornos Congénitos de Glicosilación/patología , Femenino , Humanos , Masculino , Linaje , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/química , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia , Fenotipo , Dominios Proteicos
6.
Arch Iran Med ; 24(5): 364-373, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34196201

RESUMEN

BACKGROUND: Neurodevelopmental and intellectual impairments are extremely heterogeneous disorders caused by a diverse variety of genes involved in different molecular pathways and networks. Genetic alterations in cilia, highly-conserved organelles with sensorineural and signal transduction roles can compromise their proper functions and lead to so-called "ciliopathies" featuring intellectual disability (ID) or neurodevelopmental disorders as frequent clinical manifestations. Here, we report several Iranian families affected with ID and other ciliopathy-associated features carrying known and novel variants in two ciliary genes; CEP104 and CEP290. METHODS: Whole exome and Targeted exome sequencing were carried out on affected individuals. Lymphoblastoid cell lines (LCLs) derived from the members of affected families were established for two families carrying CEP104 mutations. RNA and protein expression studies were carried out on these cells using qPCR and Western blot, respectively. RESULTS: A novel homozygous variant; NM_025114.3:c.7341_7344dupACTT p.(Ser2449Thrfs*8) and four previously reported homozygous variants; NM_025114.3:c.322C>T p.(Arg108*), NM_025114.3:c.4393C>T p.(Arg1465*), NM_025114.3:c.5668G>T p.(Gly1890*) and NM_025114.3:c.1666dupA p.(Ile556Asnfs*20) were identified in CEP290. In two other families, two novel homozygous variants; NM_014704:c.2356_2357insTT p.(Cys786Phefs*11) and NM_014704:c.1901_1902insT p.(Leu634Phefs*33) were identified in CEP104, another ciliary gene. qPCR and Western blot analyses showed significantly lower levels of CEP104 transcripts and protein in patients compared to heterozygous or normal family members. CONCLUSION: We emphasize on the clinical variability and pleiotropic phenotypes due to variants of these genes. In conclusion, our findings support the pivotal role of these genes resulting in cognitive and neurodevelopmental features.


Asunto(s)
Discapacidad Intelectual , Antígenos de Neoplasias , Proteínas de Ciclo Celular/genética , Proteínas del Citoesqueleto/genética , Exoma , Humanos , Discapacidad Intelectual/genética , Irán , Mutación , Linaje , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA