Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(7): 2003-2019.e16, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33308478

RESUMEN

The ability to record transient cellular events in the DNA or RNA of cells would enable precise, large-scale analysis, selection, and reprogramming of heterogeneous cell populations. Here, we report a molecular technology for stable genetic tagging of cells that exhibit activity-related increases in intracellular calcium concentration (FLiCRE). We used FLiCRE to transcriptionally label activated neural ensembles in the nucleus accumbens of the mouse brain during brief stimulation of aversive inputs. Using single-cell RNA sequencing, we detected FLiCRE transcripts among the endogenous transcriptome, providing simultaneous readout of both cell-type and calcium activation history. We identified a cell type in the nucleus accumbens activated downstream of long-range excitatory projections. Taking advantage of FLiCRE's modular design, we expressed an optogenetic channel selectively in this cell type and showed that direct recruitment of this otherwise genetically inaccessible population elicits behavioral aversion. The specificity and minute resolution of FLiCRE enables molecularly informed characterization, manipulation, and reprogramming of activated cellular ensembles.


Asunto(s)
Conducta Animal , Calcio/metabolismo , Cuerpo Estriado/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Cinética , Masculino , Ratones Endogámicos C57BL , Neuronas/metabolismo , Optogenética , Ratas , Análisis de la Célula Individual , Transcriptoma/genética
2.
Cell ; 166(2): 269-272, 2016 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-27419864

RESUMEN

MDMA, better known as the recreational drug "ecstasy," is well known for stimulating a feeling of closeness and empathy in its users. We advocate that exploring its mechanism of action could lead to new treatments for psychiatric conditions characterized by impairments in social behavior.


Asunto(s)
Encéfalo/efectos de los fármacos , Empatía , N-Metil-3,4-metilenodioxianfetamina/uso terapéutico , Conducta Social , Encéfalo/fisiología , Estudios Clínicos como Asunto , Liberación de Fármacos , Empatía/efectos de los fármacos , Historia del Siglo XX , Humanos , N-Metil-3,4-metilenodioxianfetamina/clasificación , N-Metil-3,4-metilenodioxianfetamina/historia , N-Metil-3,4-metilenodioxianfetamina/farmacología
3.
Cell ; 162(3): 593-606, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26213384

RESUMEN

α- and ß-neurexins are presynaptic cell-adhesion molecules implicated in autism and schizophrenia. We find that, although ß-neurexins are expressed at much lower levels than α-neurexins, conditional knockout of ß-neurexins with continued expression of α-neurexins dramatically decreased neurotransmitter release at excitatory synapses in cultured cortical neurons. The ß-neurexin knockout phenotype was attenuated by CB1-receptor inhibition, which blocks presynaptic endocannabinoid signaling, or by 2-arachidonoylglycerol synthesis inhibition, which impairs postsynaptic endocannabinoid release. In synapses formed by CA1-region pyramidal neurons onto burst-firing subiculum neurons, presynaptic in vivo knockout of ß-neurexins aggravated endocannabinoid-mediated inhibition of synaptic transmission and blocked LTP; presynaptic CB1-receptor antagonists or postsynaptic 2-arachidonoylglycerol synthesis inhibition again reversed this block. Moreover, conditional knockout of ß-neurexins in CA1-region neurons impaired contextual fear memories. Thus, our data suggest that presynaptic ß-neurexins control synaptic strength in excitatory synapses by regulating postsynaptic 2-arachidonoylglycerol synthesis, revealing an unexpected role for ß-neurexins in the endocannabinoid-dependent regulation of neural circuits.


Asunto(s)
Endocannabinoides/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Vías Nerviosas/metabolismo , Sinapsis/metabolismo , Animales , Ácidos Araquidónicos/biosíntesis , Calcio/metabolismo , Proteínas de Unión al Calcio , Endocannabinoides/biosíntesis , Glicéridos/biosíntesis , Hipocampo/citología , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Moléculas de Adhesión de Célula Nerviosa/genética , Neuronas/metabolismo , Neurotransmisores/metabolismo , Transducción de Señal
4.
Cell ; 162(3): 622-34, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26232228

RESUMEN

Dopamine (DA) neurons in the midbrain ventral tegmental area (VTA) integrate complex inputs to encode multiple signals that influence motivated behaviors via diverse projections. Here, we combine axon-initiated viral transduction with rabies-mediated trans-synaptic tracing and Cre-based cell-type-specific targeting to systematically map input-output relationships of VTA-DA neurons. We found that VTA-DA (and VTA-GABA) neurons receive excitatory, inhibitory, and modulatory input from diverse sources. VTA-DA neurons projecting to different forebrain regions exhibit specific biases in their input selection. VTA-DA neurons projecting to lateral and medial nucleus accumbens innervate largely non-overlapping striatal targets, with the latter also sending extensive extra-striatal axon collaterals. Using electrophysiology and behavior, we validated new circuits identified in our tracing studies, including a previously unappreciated top-down reinforcing circuit from anterior cortex to lateral nucleus accumbens via VTA-DA neurons. This study highlights the utility of our viral-genetic tracing strategies to elucidate the complex neural substrates that underlie motivated behaviors.


Asunto(s)
Vías Nerviosas , Neuronas/metabolismo , Área Tegmental Ventral/citología , Área Tegmental Ventral/metabolismo , Animales , Mapeo Encefálico , Dopamina/metabolismo , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/metabolismo , Virus de la Rabia , Ácido gamma-Aminobutírico/metabolismo
5.
Cell ; 162(3): 635-47, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26232229

RESUMEN

Recent progress in understanding the diversity of midbrain dopamine neurons has highlighted the importance--and the challenges--of defining mammalian neuronal cell types. Although neurons may be best categorized using inclusive criteria spanning biophysical properties, wiring of inputs, wiring of outputs, and activity during behavior, linking all of these measurements to cell types within the intact brains of living mammals has been difficult. Here, using an array of intact-brain circuit interrogation tools, including CLARITY, COLM, optogenetics, viral tracing, and fiber photometry, we explore the diversity of dopamine neurons within the substantia nigra pars compacta (SNc). We identify two parallel nigrostriatal dopamine neuron subpopulations differing in biophysical properties, input wiring, output wiring to dorsomedial striatum (DMS) versus dorsolateral striatum (DLS), and natural activity patterns during free behavior. Our results reveal independently operating nigrostriatal information streams, with implications for understanding the logic of dopaminergic feedback circuits and the diversity of mammalian neuronal cell types.


Asunto(s)
Vías Nerviosas , Neuronas/metabolismo , Sustancia Negra/metabolismo , Animales , Mapeo Encefálico , Dopamina/metabolismo , Ratones , Ratones Endogámicos C57BL , Recompensa , Choque
6.
Cell ; 161(4): 803-16, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25913192

RESUMEN

Active neurons exert a mitogenic effect on normal neural precursor and oligodendroglial precursor cells, the putative cellular origins of high-grade glioma (HGG). By using optogenetic control of cortical neuronal activity in a patient-derived pediatric glioblastoma xenograft model, we demonstrate that active neurons similarly promote HGG proliferation and growth in vivo. Conditioned medium from optogenetically stimulated cortical slices promoted proliferation of pediatric and adult patient-derived HGG cultures, indicating secretion of activity-regulated mitogen(s). The synaptic protein neuroligin-3 (NLGN3) was identified as the leading candidate mitogen, and soluble NLGN3 was sufficient and necessary to promote robust HGG cell proliferation. NLGN3 induced PI3K-mTOR pathway activity and feedforward expression of NLGN3 in glioma cells. NLGN3 expression levels in human HGG negatively correlated with patient overall survival. These findings indicate the important role of active neurons in the brain tumor microenvironment and identify secreted NLGN3 as an unexpected mechanism promoting neuronal activity-regulated cancer growth.


Asunto(s)
Neoplasias Encefálicas/patología , Moléculas de Adhesión Celular Neuronal/metabolismo , Proliferación Celular , Glioma/patología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Adolescente , Secuencia de Aminoácidos , Animales , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Xenoinjertos , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Trasplante de Neoplasias , Neuronas/metabolismo
7.
Nature ; 630(8017): 677-685, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839962

RESUMEN

All drugs of abuse induce long-lasting changes in synaptic transmission and neural circuit function that underlie substance-use disorders1,2. Another recently appreciated mechanism of neural circuit plasticity is mediated through activity-regulated changes in myelin that can tune circuit function and influence cognitive behaviour3-7. Here we explore the role of myelin plasticity in dopaminergic circuitry and reward learning. We demonstrate that dopaminergic neuronal activity-regulated myelin plasticity is a key modulator of dopaminergic circuit function and opioid reward. Oligodendroglial lineage cells respond to dopaminergic neuronal activity evoked by optogenetic stimulation of dopaminergic neurons, optogenetic inhibition of GABAergic neurons, or administration of morphine. These oligodendroglial changes are evident selectively within the ventral tegmental area but not along the axonal projections in the medial forebrain bundle nor within the target nucleus accumbens. Genetic blockade of oligodendrogenesis dampens dopamine release dynamics in nucleus accumbens and impairs behavioural conditioning to morphine. Taken together, these findings underscore a critical role for oligodendrogenesis in reward learning and identify dopaminergic neuronal activity-regulated myelin plasticity as an important circuit modification that is required for opioid reward.


Asunto(s)
Analgésicos Opioides , Vaina de Mielina , Vías Nerviosas , Plasticidad Neuronal , Recompensa , Área Tegmental Ventral , Animales , Femenino , Masculino , Ratones , Analgésicos Opioides/farmacología , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/efectos de los fármacos , Ratones Endogámicos C57BL , Morfina/farmacología , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Núcleo Accumbens/citología , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiología , Núcleo Accumbens/efectos de los fármacos , Oligodendroglía/metabolismo , Oligodendroglía/citología , Oligodendroglía/efectos de los fármacos , Optogenética , Área Tegmental Ventral/fisiología , Área Tegmental Ventral/citología , Área Tegmental Ventral/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Linaje de la Célula
8.
Cell ; 158(1): 198-212, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24995986

RESUMEN

In humans, neuroligin-3 mutations are associated with autism, whereas in mice, the corresponding mutations produce robust synaptic and behavioral changes. However, different neuroligin-3 mutations cause largely distinct phenotypes in mice, and no causal relationship links a specific synaptic dysfunction to a behavioral change. Using rotarod motor learning as a proxy for acquired repetitive behaviors in mice, we found that different neuroligin-3 mutations uniformly enhanced formation of repetitive motor routines. Surprisingly, neuroligin-3 mutations caused this phenotype not via changes in the cerebellum or dorsal striatum but via a selective synaptic impairment in the nucleus accumbens/ventral striatum. Here, neuroligin-3 mutations increased rotarod learning by specifically impeding synaptic inhibition onto D1-dopamine receptor-expressing but not D2-dopamine receptor-expressing medium spiny neurons. Our data thus suggest that different autism-associated neuroligin-3 mutations cause a common increase in acquired repetitive behaviors by impairing a specific striatal synapse and thereby provide a plausible circuit substrate for autism pathophysiology.


Asunto(s)
Trastorno Autístico/genética , Trastorno Autístico/fisiopatología , Moléculas de Adhesión Celular Neuronal/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Animales , Trastorno Autístico/metabolismo , Ganglios Basales/metabolismo , Ganglios Basales/fisiopatología , Moléculas de Adhesión Celular Neuronal/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Mutación , Proteínas del Tejido Nervioso/metabolismo , Núcleo Accumbens/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante
9.
Cell ; 157(7): 1535-51, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24949967

RESUMEN

Social interaction is a complex behavior essential for many species and is impaired in major neuropsychiatric disorders. Pharmacological studies have implicated certain neurotransmitter systems in social behavior, but circuit-level understanding of endogenous neural activity during social interaction is lacking. We therefore developed and applied a new methodology, termed fiber photometry, to optically record natural neural activity in genetically and connectivity-defined projections to elucidate the real-time role of specified pathways in mammalian behavior. Fiber photometry revealed that activity dynamics of a ventral tegmental area (VTA)-to-nucleus accumbens (NAc) projection could encode and predict key features of social, but not novel object, interaction. Consistent with this observation, optogenetic control of cells specifically contributing to this projection was sufficient to modulate social behavior, which was mediated by type 1 dopamine receptor signaling downstream in the NAc. Direct observation of deep projection-specific activity in this way captures a fundamental and previously inaccessible dimension of mammalian circuit dynamics.


Asunto(s)
Vías Nerviosas , Núcleo Accumbens/fisiología , Conducta Social , Área Tegmental Ventral/fisiología , Animales , Señalización del Calcio , Femenino , Ratones , Núcleo Accumbens/citología , Fotometría/métodos , Receptores Dopaminérgicos/química , Receptores Dopaminérgicos/metabolismo , Recompensa , Rodopsina/química , Rodopsina/metabolismo , Área Tegmental Ventral/citología
10.
Nature ; 621(7978): 381-388, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648849

RESUMEN

Only recently have more specific circuit-probing techniques become available to inform previous reports implicating the rodent hippocampus in orexigenic appetitive processing1-4. This function has been reported to be mediated at least in part by lateral hypothalamic inputs, including those involving orexigenic lateral hypothalamic neuropeptides, such as melanin-concentrating hormone5,6. This circuit, however, remains elusive in humans. Here we combine tractography, intracranial electrophysiology, cortico-subcortical evoked potentials, and brain-clearing 3D histology to identify an orexigenic circuit involving the lateral hypothalamus and converging in a hippocampal subregion. We found that low-frequency power is modulated by sweet-fat food cues, and this modulation was specific to the dorsolateral hippocampus. Structural and functional analyses of this circuit in a human cohort exhibiting dysregulated eating behaviour revealed connectivity that was inversely related to body mass index. Collectively, this multimodal approach describes an orexigenic subnetwork within the human hippocampus implicated in obesity and related eating disorders.


Asunto(s)
Hipocampo , Vías Nerviosas , Orexinas , Humanos , Índice de Masa Corporal , Estudios de Cohortes , Señales (Psicología) , Electrofisiología , Potenciales Evocados/fisiología , Trastornos de Alimentación y de la Ingestión de Alimentos/metabolismo , Conducta Alimentaria , Alimentos , Hipocampo/anatomía & histología , Hipocampo/citología , Hipocampo/metabolismo , Obesidad/metabolismo , Orexinas/metabolismo
11.
Cell ; 154(6): 1171-4, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-24034236

RESUMEN

This year, the Albert Lasker Basic Medical Research Award will be shared by Richard Scheller and Thomas Südhof for their elucidation of the molecular mechanisms underlying neurotransmitter release. Their discoveries provided insight into the molecular basis of synaptic transmission and enhanced our understanding of how synaptic dysfunction may cause neuropsychiatric disorders.


Asunto(s)
Distinciones y Premios , Neurofisiología/historia , Neurotransmisores/metabolismo , Sinapsis , Animales , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Enfermedades del Sistema Nervioso/metabolismo , Sinaptotagminas/metabolismo , Estados Unidos
12.
Cell ; 154(1): 75-88, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23827676

RESUMEN

Neurexins are essential presynaptic cell adhesion molecules that are linked to schizophrenia and autism and are subject to extensive alternative splicing. Here, we used a genetic approach to test the physiological significance of neurexin alternative splicing. We generated knockin mice in which alternatively spliced sequence #4 (SS4) of neuexin-3 is constitutively included but can be selectively excised by cre-recombination. SS4 of neurexin-3 was chosen because it is highly regulated and controls neurexin binding to neuroligins, LRRTMs, and other ligands. Unexpectedly, constitutive inclusion of SS4 in presynaptic neurexin-3 decreased postsynaptic AMPA, but not NMDA receptor levels, and enhanced postsynaptic AMPA receptor endocytosis. Moreover, constitutive inclusion of SS4 in presynaptic neurexin-3 abrogated postsynaptic AMPA receptor recruitment during NMDA receptor-dependent LTP. These phenotypes were fully rescued by constitutive excision of SS4 in neurexin-3. Thus, alternative splicing of presynaptic neurexin-3 controls postsynaptic AMPA receptor trafficking, revealing an unanticipated alternative splicing mechanism for trans-synaptic regulation of synaptic strength and long-term plasticity.


Asunto(s)
Empalme Alternativo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Animales , Endocitosis , Técnicas de Sustitución del Gen , Hipocampo/metabolismo , Potenciación a Largo Plazo , Ratones , Proteínas del Tejido Nervioso/genética , Sinapsis
13.
Nature ; 599(7883): 96-101, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34616037

RESUMEN

Social memory-the ability to recognize and remember familiar conspecifics-is critical for the survival of an animal in its social group1,2. The dorsal CA2 (dCA2)3-5 and ventral CA1 (vCA1)6 subregions of the hippocampus, and their projection targets6,7, have important roles in social memory. However, the relevant extrahippocampal input regions remain poorly defined. Here we identify the medial septum (MS) as a dCA2 input region that is critical for social memory and reveal that modulation of the MS by serotonin (5-HT) bidirectionally controls social memory formation, thereby affecting memory stability. Novel social interactions increase activity in dCA2-projecting MS neurons and induce plasticity at glutamatergic synapses from MS neurons onto dCA2 pyramidal neurons. The activity of dCA2-projecting MS cells is enhanced by the neuromodulator 5-HT acting on 5-HT1B receptors. Moreover, optogenetic manipulation of median raphe 5-HT terminals in the MS bidirectionally regulates social memory stability. This work expands our understanding of the neural mechanisms by which social interactions lead to social memory and provides evidence that 5-HT has a critical role in promoting not only prosocial behaviours8,9, but also social memory, by influencing distinct target structures.


Asunto(s)
Memoria/fisiología , Vías Nerviosas , Núcleos Septales/fisiología , Serotonina/metabolismo , Conducta Social , Animales , Región CA2 Hipocampal/citología , Región CA2 Hipocampal/fisiología , Femenino , Ácido Glutámico/metabolismo , Masculino , Ratones , Plasticidad Neuronal , Optogenética , Células Piramidales/metabolismo , Receptor de Serotonina 5-HT1B/metabolismo , Núcleos Septales/citología , Sinapsis/metabolismo
14.
Nature ; 586(7827): 87-94, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32939091

RESUMEN

Advanced imaging methods now allow cell-type-specific recording of neural activity across the mammalian brain, potentially enabling the exploration of how brain-wide dynamical patterns give rise to complex behavioural states1-12. Dissociation is an altered behavioural state in which the integrity of experience is disrupted, resulting in reproducible cognitive phenomena including the dissociation of stimulus detection from stimulus-related affective responses. Dissociation can occur as a result of trauma, epilepsy or dissociative drug use13,14, but despite its substantial basic and clinical importance, the underlying neurophysiology of this state is unknown. Here we establish such a dissociation-like state in mice, induced by precisely-dosed administration of ketamine or phencyclidine. Large-scale imaging of neural activity revealed that these dissociative agents elicited a 1-3-Hz rhythm in layer 5 neurons of the retrosplenial cortex. Electrophysiological recording with four simultaneously deployed high-density probes revealed rhythmic coupling of the retrosplenial cortex with anatomically connected components of thalamus circuitry, but uncoupling from most other brain regions was observed-including a notable inverse correlation with frontally projecting thalamic nuclei. In testing for causal significance, we found that rhythmic optogenetic activation of retrosplenial cortex layer 5 neurons recapitulated dissociation-like behavioural effects. Local retrosplenial hyperpolarization-activated cyclic-nucleotide-gated potassium channel 1 (HCN1) pacemakers were required for systemic ketamine to induce this rhythm and to elicit dissociation-like behavioural effects. In a patient with focal epilepsy, simultaneous intracranial stereoencephalography recordings from across the brain revealed a similarly localized rhythm in the homologous deep posteromedial cortex that was temporally correlated with pre-seizure self-reported dissociation, and local brief electrical stimulation of this region elicited dissociative experiences. These results identify the molecular, cellular and physiological properties of a conserved deep posteromedial cortical rhythm that underlies states of dissociation.


Asunto(s)
Ondas Encefálicas/fisiología , Corteza Cerebral/fisiología , Trastornos Disociativos/fisiopatología , Potenciales de Acción/efectos de los fármacos , Animales , Conducta/efectos de los fármacos , Ondas Encefálicas/efectos de los fármacos , Corteza Cerebral/citología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/efectos de los fármacos , Trastornos Disociativos/diagnóstico por imagen , Electrofisiología , Femenino , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ketamina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Optogenética , Autoinforme , Tálamo/citología , Tálamo/diagnóstico por imagen , Tálamo/efectos de los fármacos , Tálamo/fisiología
15.
Nature ; 573(7775): 539-545, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31534222

RESUMEN

High-grade gliomas are lethal brain cancers whose progression is robustly regulated by neuronal activity. Activity-regulated release of growth factors promotes glioma growth, but this alone is insufficient to explain the effect that neuronal activity exerts on glioma progression. Here we show that neuron and glioma interactions include electrochemical communication through bona fide AMPA receptor-dependent neuron-glioma synapses. Neuronal activity also evokes non-synaptic activity-dependent potassium currents that are amplified by gap junction-mediated tumour interconnections, forming an electrically coupled network. Depolarization of glioma membranes assessed by in vivo optogenetics promotes proliferation, whereas pharmacologically or genetically blocking electrochemical signalling inhibits the growth of glioma xenografts and extends mouse survival. Emphasizing the positive feedback mechanisms by which gliomas increase neuronal excitability and thus activity-regulated glioma growth, human intraoperative electrocorticography demonstrates increased cortical excitability in the glioma-infiltrated brain. Together, these findings indicate that synaptic and electrical integration into neural circuits promotes glioma progression.


Asunto(s)
Encéfalo/fisiopatología , Sinapsis Eléctricas/patología , Fenómenos Electrofisiológicos , Glioma/fisiopatología , Animales , Encéfalo/citología , Membrana Celular/patología , Proliferación Celular , Uniones Comunicantes/patología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos NOD , Neuronas/patología , Optogenética , Potasio/metabolismo , Transmisión Sináptica , Células Tumorales Cultivadas
16.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34921100

RESUMEN

Impulsive overeating is a common, disabling feature of eating disorders. Both continuous deep brain stimulation (DBS) and responsive DBS, which limits current delivery to pathological brain states, have emerged as potential therapies. We used in vivo fiber photometry in wild-type, Drd1-cre, and A2a-cre mice to 1) assay subtype-specific medium spiny neuron (MSN) activity of the nucleus accumbens (NAc) during hedonic feeding of high-fat food, and 2) examine DBS strategy-specific effects on NAc activity. D1, but not D2, NAc GCaMP activity increased immediately prior to high-fat food approach. Responsive DBS triggered a GCaMP surge throughout the stimulation period and durably reduced high-fat intake. However, with continuous DBS, this surge decayed, and high-fat intake reemerged. Our results argue for a stimulation strategy-dependent modulation of D1 MSNs with a more sustained decrease in consumption with responsive DBS. This study illustrates the important role in vivo imaging can play in understanding effects of such novel therapies.


Asunto(s)
Encéfalo/fisiología , Estimulación Encefálica Profunda/métodos , Conducta Alimentaria/fisiología , Animales , Conducta Impulsiva , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/fisiología , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
17.
Nature ; 560(7720): 589-594, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089910

RESUMEN

Dysfunction in prosocial interactions is a core symptom of autism spectrum disorder. However, the neural mechanisms that underlie sociability are poorly understood, limiting the rational development of therapies to treat social deficits. Here we show in mice that bidirectional modulation of the release of serotonin (5-HT) from dorsal raphe neurons in the nucleus accumbens bidirectionally modifies sociability. In a mouse model of a common genetic cause of autism spectrum disorder-a copy number variation on chromosome 16p11.2-genetic deletion of the syntenic region from 5-HT neurons induces deficits in social behaviour and decreases dorsal raphe 5-HT neuronal activity. These sociability deficits can be rescued by optogenetic activation of dorsal raphe 5-HT neurons, an effect requiring and mimicked by activation of 5-HT1b receptors in the nucleus accumbens. These results demonstrate an unexpected role for 5-HT action in the nucleus accumbens in social behaviours, and suggest that targeting this mechanism may prove therapeutically beneficial.


Asunto(s)
Trastorno del Espectro Autista/psicología , Trastorno del Espectro Autista/terapia , Núcleo Accumbens/metabolismo , Serotonina/metabolismo , Conducta Social , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Deleción Cromosómica , Cromosomas Humanos Par 16/genética , Cromosomas de los Mamíferos/genética , Modelos Animales de Enfermedad , Núcleo Dorsal del Rafe/citología , Núcleo Dorsal del Rafe/metabolismo , Humanos , Masculino , Ratones , Vías Nerviosas , Núcleo Accumbens/citología , Optogenética , Sintenía/genética
18.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34103400

RESUMEN

The detailed mechanisms by which dopamine (DA) and serotonin (5-HT) act in the nucleus accumbens (NAc) to influence motivated behaviors in distinct ways remain largely unknown. Here, we examined whether DA and 5-HT selectively modulate excitatory synaptic transmission in NAc medium spiny neurons in an input-specific manner. DA reduced excitatory postsynaptic currents (EPSCs) generated by paraventricular thalamus (PVT) inputs but not by ventral hippocampus (vHip), basolateral amygdala (BLA), or medial prefrontal cortex (mPFC) inputs. In contrast, 5-HT reduced EPSCs generated by inputs from all areas except the mPFC. Release of endogenous DA and 5-HT by methamphetamine (METH) and (±)3,4-methylenedioxymethamphetamine (MDMA), respectively, recapitulated these input-specific synaptic effects. Optogenetic inhibition of PVT inputs enhanced cocaine-conditioned place preference, whereas mPFC input inhibition reduced the enhancement of sociability elicited by MDMA. These findings suggest that the distinct, input-specific filtering of excitatory inputs in the NAc by DA and 5-HT contribute to their discrete behavioral effects.


Asunto(s)
Dopamina/farmacología , Potenciales Postsinápticos Excitadores , Núcleo Accumbens/fisiología , Serotonina/farmacología , Animales , Conducta Animal/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Metanfetamina/farmacología , Ratones Endogámicos C57BL , N-Metil-3,4-metilenodioxianfetamina/farmacología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Núcleo Accumbens/efectos de los fármacos , Interacción Social/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
19.
Mol Psychiatry ; 27(8): 3374-3384, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35697760

RESUMEN

The ventromedial prefrontal cortex (vmPFC) to nucleus accumbens (NAc) circuit has been implicated in impulsive reward-seeking. This disinhibition has been implicated in obesity and often manifests as binge eating, which is associated with worse treatment outcomes and comorbidities. It remains unclear whether the vmPFC-NAc circuit is perturbed in impulsive eaters with obesity. Initially, we analyzed publicly available, high-resolution, normative imaging data to localize where vmPFC structural connections converged within the NAc. These structural connections were found to converge ventromedially in the presumed NAc shell subregion. We then analyzed multimodal clinical and imaging data to test the a priori hypothesis that the vmPFC-NAc shell circuit is linked to obesity in a sample of female participants that regularly engaged in impulsive eating (i.e., binge eating). Functionally, vmPFC-NAc shell resting-state connectivity was inversely related to body mass index (BMI) and decreased in the obese state. Structurally, vmPFC-NAc shell structural connectivity and vmPFC thickness were inversely correlated with BMI; obese binge-prone participants exhibited decreased vmPFC-NAc structural connectivity and vmPFC thickness. Finally, to examine a causal link to binge eating, we directly probed this circuit in one binge-prone obese female using NAc deep brain stimulation in a first-in-human trial. Direct stimulation of the NAc shell subregion guided by local behaviorally relevant electrophysiology was associated with a decrease in number of weekly episodes of uncontrolled eating and decreased BMI. This study unraveled vmPFC-NAc shell circuit aberrations in obesity that can be modulated to restore control over eating behavior in obesity.


Asunto(s)
Núcleo Accumbens , Corteza Prefrontal , Femenino , Humanos , Corteza Prefrontal/fisiología , Conducta Impulsiva/fisiología , Recompensa , Obesidad
20.
Nature ; 544(7650): 316-321, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28355182

RESUMEN

Strengthening of synaptic connections by NMDA (N-methyl-d-aspartate) receptor-dependent long-term potentiation (LTP) shapes neural circuits and mediates learning and memory. During the induction of NMDA-receptor-dependent LTP, Ca2+ influx stimulates recruitment of synaptic AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors, thereby strengthening synapses. How Ca2+ induces the recruitment of AMPA receptors remains unclear. Here we show that, in the pyramidal neurons of the hippocampal CA1 region in mice, blocking postsynaptic expression of both synaptotagmin-1 (Syt1) and synaptotagmin-7 (Syt7), but not of either alone, abolished LTP. LTP was restored by expression of wild-type Syt7 but not of a Ca2+-binding-deficient mutant Syt7. Blocking postsynaptic expression of Syt1 and Syt7 did not impair basal synaptic transmission, reduce levels of synaptic or extrasynaptic AMPA receptors, or alter other AMPA receptor trafficking events. Moreover, expression of dominant-negative mutant Syt1 which inhibits Ca2+-dependent presynaptic vesicle exocytosis, also blocked Ca2+-dependent postsynaptic AMPA receptor exocytosis, thereby abolishing LTP. Our results suggest that postsynaptic Syt1 and Syt7 act as redundant Ca2+-sensors for Ca2+-dependent exocytosis of AMPA receptors during LTP, and thereby delineate a simple mechanism for the recruitment of AMPA receptors that mediates LTP.


Asunto(s)
Exocitosis , Potenciación a Largo Plazo/fisiología , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Sinaptotagminas/metabolismo , Animales , Región CA1 Hipocampal/citología , Calcio/metabolismo , Femenino , Masculino , Ratones , Mutación , Transporte de Proteínas , Células Piramidales/metabolismo , Transmisión Sináptica , Sinaptotagminas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA