Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Appl Environ Microbiol ; 88(22): e0125822, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36286488

RESUMEN

Glycolysis is an ancient, widespread, and highly conserved metabolic pathway that converts glucose into pyruvate. In the canonical pathway, the phosphofructokinase (PFK) reaction plays an important role in controlling flux through the pathway. Clostridium thermocellum has an atypical glycolysis and uses pyrophosphate (PPi) instead of ATP as the phosphate donor for the PFK reaction. The reduced thermodynamic driving force of the PPi-PFK reaction shifts the entire pathway closer to thermodynamic equilibrium, which has been predicted to limit product titers. Here, we replace the PPi-PFK reaction with an ATP-PFK reaction. We demonstrate that the local changes are consistent with thermodynamic predictions: the ratio of fructose 1,6-bisphosphate to fructose-6-phosphate increases, and the reverse flux through the reaction (determined by 13C labeling) decreases. The final titer and distribution of fermentation products, however, do not change, demonstrating that the thermodynamic constraints of the PPi-PFK reaction are not the sole factor limiting product titer. IMPORTANCE The ability to control the distribution of thermodynamic driving force throughout a metabolic pathway is likely to be an important tool for metabolic engineering. The phosphofructokinase reaction is a key enzyme in Embden-Mayerhof-Parnas glycolysis and therefore improving the thermodynamic driving force of this reaction in C. thermocellum is believed to enable higher product titers. Here, we demonstrate switching from pyrophosphate to ATP does in fact increases the thermodynamic driving force of the phosphofructokinase reaction in vivo. This study also identifies and overcomes a physiological hurdle toward expressing an ATP-dependent phosphofructokinase in an organism that utilizes an atypical glycolytic pathway. As such, the method described here to enable expression of ATP-dependent phosphofructokinase in an organism with an atypical glycolytic pathway will be informative toward engineering the glycolytic pathways of other industrial organism candidates with atypical glycolytic pathways.


Asunto(s)
Clostridium thermocellum , Clostridium thermocellum/metabolismo , Difosfatos/metabolismo , Fosfofructoquinasas/genética , Fosfofructoquinasa-1/genética , Fosfofructoquinasa-1/metabolismo , Glucólisis , Termodinámica , Adenosina Trifosfato/metabolismo
2.
Metab Eng ; 42: 175-184, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28663138

RESUMEN

Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields and titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. This suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Clostridium thermocellum/metabolismo , Etanol/metabolismo , Thermoanaerobacterium/genética , Clostridium thermocellum/genética , Thermoanaerobacterium/enzimología
3.
Metab Eng ; 39: 169-180, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27914869

RESUMEN

The metabolism of Clostridium thermocellum is notable in that it assimilates sugar via the EMP pathway but does not possess a pyruvate kinase enzyme. In the wild type organism, there are three proposed pathways for conversion of phosphoenolpyruvate (PEP) to pyruvate, which differ in their cofactor usage. One path uses pyruvate phosphate dikinase (PPDK), another pathway uses the combined activities of PEP carboxykinase (PEPCK) and oxaloacetate decarboxylase (ODC). Yet another pathway, the malate shunt, uses the combined activities of PEPCK, malate dehydrogenase and malic enzyme. First we showed that there is no flux through the ODC pathway by enzyme assay. Flux through the remaining two pathways (PPDK and malate shunt) was determined by dynamic 13C labeling. In the wild-type strain, the malate shunt accounts for about 33±2% of the flux to pyruvate, with the remainder via the PPDK pathway. Deletion of the ppdk gene resulted in a redirection of all pyruvate flux through the malate shunt. This provides the first direct evidence of the in-vivo function of the malate shunt.


Asunto(s)
Vías Biosintéticas/fisiología , Clostridium thermocellum/fisiología , Malatos/metabolismo , Análisis de Flujos Metabólicos/métodos , Fosfoenolpiruvato/metabolismo , Piruvato Quinasa/metabolismo , Ácido Pirúvico/metabolismo , Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Glucosa/metabolismo , Glucólisis/fisiología , Redes y Vías Metabólicas/fisiología , Modelos Biológicos , Ácido Pirúvico/aislamiento & purificación
4.
Biotechnol Biofuels Bioprod ; 16(1): 137, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710260

RESUMEN

Clostridium thermocellum is a natively cellulolytic bacterium that is promising candidate for cellulosic biofuel production, and can produce ethanol at high yields (75-80% of theoretical) but the ethanol titers produced thus far are too low for commercial application. In several strains of C. thermocellum engineered for increased ethanol yield, ethanol titer seems to be limited by ethanol tolerance. Previous work to improve ethanol tolerance has focused on the WT organism. In this work, we focused on understanding ethanol tolerance in several engineered strains of C. thermocellum. We observed a tradeoff between ethanol tolerance and production. Adaptation for increased ethanol tolerance decreases ethanol production. Second, we observed a consistent genetic response to ethanol stress involving mutations at the AdhE locus. These mutations typically reduced NADH-linked ADH activity. About half of the ethanol tolerance phenotype could be attributed to the elimination of NADH-linked activity based on a targeted deletion of adhE. Finally, we observed that rich growth medium increases ethanol tolerance, but this effect is eliminated in an adhE deletion strain. Together, these suggest that ethanol inhibits growth and metabolism via a redox-imbalance mechanism. The improved understanding of mechanisms of ethanol tolerance described here lays a foundation for developing strains of C. thermocellum with improved ethanol production.

5.
Front Microbiol ; 12: 628308, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679651

RESUMEN

The pyruvate kinase (PYK) isozyme from Thermoanaerobacterium saccharolyticum (TsPYK) has previously been used in metabolic engineering for improved ethanol production. This isozyme belongs to a subclass of PYK isozymes that include an extra C-domain. Like other isozymes that include this extra C-domain, we found that TsPYK is activated by AMP and ribose-5-phosphate (R5P). Our use of sugar-phosphate analogs generated a surprising result in that IMP and GMP are allosteric inhibitors (rather than activators) of TsPYK. We believe this to be the first report of any PYK isozyme being inhibited by IMP and GMP. A truncated protein that lacks the extra C-domain is also inhibited by IMP. A screen of several other bacterial PYK enzymes (include several that have the extra-C domain) indicates that the inhibition by IMP is specific to only a subset of those isozymes.

6.
Metab Eng Commun ; 10: e00122, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32025490

RESUMEN

Thermoanaerobacterium saccharolyticum is an anaerobic thermophile that can ferment hemicellulose to produce biofuels, such as ethanol. It has been engineered to produce ethanol at high yield and titer. T. saccharolyticum uses the Embden-Meyerhof-Parnas (EMP) pathway for glycolysis. However, the genes and enzymes used in each step of the EMP pathway in T. saccharolyticum are not completely known. In T. saccharolyticum, both pyruvate kinase (PYK) and pyruvate phosphate dikinase (PPDK) are highly expressed based on transcriptomic and proteomic data. Both enzymes catalyze the formation of pyruvate from phosphoenolpyruvate (PEP). PYK is typically the last step of EMP glycolysis pathway while PPDK is reversible and is found mostly in C4 plants and some microorganisms. It is not clear what role PYK and PPDK play in T. saccharolyticum metabolism and fermentation pathways and whether both are necessary. In this study we deleted the ppdk gene in wild type and homoethanologen strains of T. saccharolyticum and showed that it is not essential for growth or ethanol production.

7.
Biotechnol Biofuels ; 13: 40, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32175007

RESUMEN

BACKGROUND: Engineering efforts targeted at increasing ethanol by modifying the central fermentative metabolism of Clostridium thermocellum have been variably successful. Here, we aim to understand this variation by a multifaceted approach including genomic and transcriptomic analysis combined with chemostat cultivation and high solids cellulose fermentation. Three strain lineages comprising 16 strains total were examined. Two strain lineages in which genes involved in pathways leading to organic acids and/or sporulation had been knocked out resulted in four end-strains after adaptive laboratory evolution (ALE). A third strain lineage recapitulated mutations involving adhE that occurred spontaneously in some of the engineered strains. RESULTS: Contrary to lactate dehydrogenase, deleting phosphotransacetylase (pta, acetate) negatively affected steady-state biomass concentration and caused increased extracellular levels of free amino acids and pyruvate, while no increase in ethanol was detected. Adaptive laboratory evolution (ALE) improved growth and shifted elevated levels of amino acids and pyruvate towards ethanol, but not for all strain lineages. Three out of four end-strains produced ethanol at higher yield, and one did not. The occurrence of a mutation in the adhE gene, expanding its nicotinamide-cofactor compatibility, enabled two end-strains to produce more ethanol. A disruption in the hfsB hydrogenase is likely the reason why a third end-strain was able to make more ethanol. RNAseq analysis showed that the distribution of fermentation products was generally not regulated at the transcript level. At 120 g/L cellulose loadings, deletions of spo0A, ldh and pta and adaptive evolution did not negatively influence cellulose solubilization and utilization capabilities. Strains with a disruption in hfsB or a mutation in adhE produced more ethanol, isobutanol and 2,3-butanediol under these conditions and the highest isobutanol and ethanol titers reached were 5.1 and 29.9 g/L, respectively. CONCLUSIONS: Modifications in the organic acid fermentative pathways in Clostridium thermocellum caused an increase in extracellular pyruvate and free amino acids. Adaptive laboratory evolution led to improved growth, and an increase in ethanol yield and production due a mutation in adhE or a disruption in hfsB. Strains with deletions in ldh and pta pathways and subjected to ALE demonstrated undiminished cellulolytic capabilities when cultured on high cellulose loadings.

8.
Biotechnol Biofuels ; 12: 186, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31367231

RESUMEN

BACKGROUND: Biofuel production from plant cell walls offers the potential for sustainable and economically attractive alternatives to petroleum-based products. In particular, Clostridium thermocellum is a promising host for consolidated bioprocessing (CBP) because of its strong native ability to ferment cellulose. RESULTS: We tested 12 different enzyme combinations to identify an n-butanol pathway with high titer and thermostability in C. thermocellum. The best producing strain contained the thiolase-hydroxybutyryl-CoA dehydrogenase-crotonase (Thl-Hbd-Crt) module from Thermoanaerobacter thermosaccharolyticum, the trans-enoyl-CoA reductase (Ter) enzyme from Spirochaeta thermophila and the butyraldehyde dehydrogenase and alcohol dehydrogenase (Bad-Bdh) module from Thermoanaerobacter sp. X514 and was able to produce 88 mg/L n-butanol. The key enzymes from this combination were further optimized by protein engineering. The Thl enzyme was engineered by introducing homologous mutations previously identified in Clostridium acetobutylicum. The Hbd and Ter enzymes were engineered for changes in cofactor specificity using the CSR-SALAD algorithm to guide the selection of mutations. The cofactor engineering of Hbd had the unexpected side effect of also increasing activity by 50-fold. CONCLUSIONS: Here we report engineering C. thermocellum to produce n-butanol. Our initial pathway designs resulted in low levels (88 mg/L) of n-butanol production. By engineering the protein sequence of key enzymes in the pathway, we increased the n-butanol titer by 2.2-fold. We further increased n-butanol production by adding ethanol to the growth media. By combining all these improvements, the engineered strain was able to produce 357 mg/L of n-butanol from cellulose within 120 h.

9.
Biotechnol Biofuels ; 11: 242, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30202437

RESUMEN

BACKGROUND: Clostridium thermocellum has been the subject of multiple metabolic engineering strategies to improve its ability to ferment cellulose to ethanol, with varying degrees of success. For ethanol production in C. thermocellum, the conversion of pyruvate to acetyl-CoA is catalyzed primarily by the pyruvate ferredoxin oxidoreductase (PFOR) pathway. Thermoanaerobacterium saccharolyticum, which was previously engineered to produce ethanol of high yield (> 80%) and titer (70 g/L), also uses a pyruvate ferredoxin oxidoreductase, pforA, for ethanol production. RESULTS: Here, we introduced the T. saccharolyticum pforA and ferredoxin into C. thermocellum. The introduction of pforA resulted in significant improvements to ethanol yield and titer in C. thermocellum grown on 50 g/L of cellobiose, but only when four other T. saccharolyticum genes (adhA, nfnA, nfnB, and adhEG544D ) were also present. T. saccharolyticum ferredoxin did not have any observable impact on ethanol production. The improvement to ethanol production was sustained even when all annotated native C. thermocellum pfor genes were deleted. On high cellulose concentrations, the maximum ethanol titer achieved by this engineered C. thermocellum strain from 100 g/L Avicel was 25 g/L, compared to 22 g/L for the reference strain, LL1319 (adhA(Tsc)-nfnAB(Tsc)-adhEG544D (Tsc)) under similar conditions. In addition, we also observed that deletion of the C. thermocellum pfor4 results in a significant decrease in isobutanol production. CONCLUSIONS: Here, we demonstrate that the pforA gene can improve ethanol production in C. thermocellum as part of the T. saccharolyticum pyruvate-to-ethanol pathway. In our previous strain, high-yield (~ 75% of theoretical) ethanol production could be achieved with at most 20 g/L substrate. In this strain, high-yield ethanol production can be achieved up to 50 g/L substrate. Furthermore, the introduction of pforA increased the maximum titer by 14%.

10.
Biotechnol Biofuels ; 10: 282, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29213322

RESUMEN

BACKGROUND: With the discovery of interspecies hydrogen transfer in the late 1960s (Bryant et al. in Arch Microbiol 59:20-31, 1967), it was shown that reducing the partial pressure of hydrogen could cause mixed acid fermenting organisms to produce acetate at the expense of ethanol. Hydrogen and ethanol are both more reduced than glucose. Thus there is a tradeoff between production of these compounds imposed by electron balancing requirements; however, the mechanism is not fully known. RESULTS: Deletion of the hfsA or B subunits resulted in a roughly 1.8-fold increase in ethanol yield. The increase in ethanol production appears to be associated with an increase in alcohol dehydrogenase activity, which appears to be due, at least in part, to increased expression of the adhE gene, and may suggest a regulatory linkage between hfsB and adhE. We studied this system most intensively in the organism Thermoanaerobacterium saccharolyticum; however, deletion of hfsB also increases ethanol production in other thermophilic bacteria suggesting that this could be used as a general technique for engineering thermophilic bacteria for improved ethanol production in organisms with hfs-type hydrogenases. CONCLUSION: Since its discovery by Shaw et al. (JAMA 191:6457-64, 2009), the hfs hydrogenase has been suspected to act as a regulator due to the presence of a PAS domain. We provide additional support for the presence of a regulatory phenomenon. In addition, we find a practical application for this scientific insight, namely increasing ethanol yield in strains that are of interest for ethanol production from cellulose or hemicellulose. In two of these organisms (T. xylanolyticum and T. thermosaccharolyticum), the ethanol yields are the highest reported to date.

11.
Biotechnol Biofuels ; 9: 116, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27257435

RESUMEN

BACKGROUND: Biofuel production from plant cell walls offers the potential for sustainable and economically attractive alternatives to petroleum-based products. Fuels from cellulosic biomass are particularly promising, but would benefit from lower processing costs. Clostridium thermocellum can rapidly solubilize and ferment cellulosic biomass, making it a promising candidate microorganism for consolidated bioprocessing for biofuel production, but increases in product yield and titer are still needed. RESULTS: Here, we started with an engineered C. thermocellum strain where the central metabolic pathways to products other than ethanol had been deleted. After two stages of adaptive evolution, an evolved strain was selected with improved yield and titer. On chemically defined medium with crystalline cellulose as substrate, the evolved strain produced 22.4 ± 1.4 g/L ethanol from 60 g/L cellulose. The resulting yield was about 0.39 gETOH/gGluc eq, which is 75 % of the maximum theoretical yield. Genome resequencing, proteomics, and biochemical analysis were used to examine differences between the original and evolved strains. CONCLUSIONS: A two step selection method successfully improved the ethanol yield and the titer. This evolved strain has the highest ethanol yield and titer reported to date for C. thermocellum, and is an important step in the development of this microbe for industrial applications.

12.
Metab Eng Commun ; 2: 23-29, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34150505

RESUMEN

A key tool for metabolic engineering is the ability to express heterologous genes. One obstacle to gene expression in non-model organisms, and especially in relatively uncharacterized bacteria, is the lack of well-characterized promoters. Here we test 17 promoter regions for their ability to drive expression of the reporter genes ß-galactosidase (lacZ) and NADPH-alcohol dehydrogenase (adhB) in Clostridium thermocellum, an important bacterium for the production of cellulosic biofuels. Only three promoters have been commonly used for gene expression in C. thermocellum, gapDH, cbp and eno. Of the new promoters tested, 2638, 2926, 966 and 815 showed reliable expression. The 2638 promoter showed relatively higher activity when driving adhB (compared to lacZ), and the 815 promoter showed relatively higher activity when driving lacZ (compared to adhB).

13.
FEBS Lett ; 589(20 Pt B): 3133-40, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26320414

RESUMEN

Clostridium thermocellum efficiently degrades crystalline cellulose by a high molecular weight protein complex, the cellulosome. The bacterium regulates its cellulosomal genes using a unique extracellular biomass-sensing mechanism that involves alternative sigma factors and extracellular carbohydrate-binding modules attached to intracellular anti-sigma domains. In this study, we identified three cellulosomal xylanase genes that are regulated by the σ(I6)/RsgI6 system by utilizing sigI6 and rsgI6 knockout mutants together with primer extension analysis. Our results indicate that cellulosomal genes are expressed from both alternative σ(I6) and σ(A) vegetative promoters.


Asunto(s)
Proteínas Bacterianas/genética , Celulosomas/genética , Clostridium thermocellum/genética , Factor sigma/genética , Xilosidasas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Celulosa/metabolismo , Celulosomas/enzimología , Clostridium thermocellum/enzimología , Clostridium thermocellum/metabolismo , Fermentación , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Datos de Secuencia Molecular , Mutación , Panicum/metabolismo , Panicum/microbiología , Polisacáridos/metabolismo , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor sigma/metabolismo , Sitio de Iniciación de la Transcripción , Xilanos/metabolismo , Xilosidasas/metabolismo
14.
J Immunother (1991) ; 24(3): 232-236, 2001 05.
Artículo en Inglés | MEDLINE | ID: mdl-11395638

RESUMEN

Multiple clinically applicable methods have been used to induce dendritic cells (DCs) to express whole cell tumor antigens, including pulsing DCs with tumor lysate, and mixing DCs with apoptotic or live tumor cells. Herein we demonstrate, using two different tumor systems, that these methods are equipotent inducers of systemic antitumor immunity. Furthermore, tumor lysate pulsed DC vaccines generate more potent antitumor immunity than immunization with irradiated tumor cells plus the classic adjuvant, Corynebacterium parvum.

15.
J Bacteriol ; 186(16): 5267-80, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15292128

RESUMEN

The expression of genes involved in the pathogenesis of Staphylococcus aureus is known to be controlled by global regulatory loci, including agr, sarA, sae, arlRS, lytSR, and sarA-like genes. Here we described a novel transcriptional regulator called sarV of the SarA protein family. The transcription of sarV is low or undetectable under in vitro conditions but is significantly augmented in sarA and mgrA (norR or rat) (SA0641) mutants. The sarA and mgrA genes act as repressors of sarV expression, as confirmed by transcriptional fusion and Northern analysis data. Purified SarA and MgrA proteins bound specifically to separate regions of the sarV promoter as determined by gel shift and DNase I footprinting assays. The expression of 19 potential target genes involved in autolysis and virulence, phenotypes affected by sarA and mgrA, was evaluated in an isogenic sarV mutant pair. Our data indicated that the sarV gene product played a role regulating some virulence genes and more genes involved in autolysis. The sarV mutant was more resistant to Triton X-100 and penicillin-induced lysis compared to the wild type and the sarA mutant, whereas hyperexpression of sarV in the parental strain or the sarV mutant rendered the resultant strain highly susceptible to lysis. Zymographic analysis of murein hydrolase activity revealed that inactivation of the sarV gene results in decreased extracellular murein hydrolase activity compared to that of wild-type S. aureus. We propose that sarV may be part of the common pathway by which mgrA and sarA gene products control autolysis in S. aureus.


Asunto(s)
Proteínas Bacterianas/fisiología , Bacteriólisis , Regulación Bacteriana de la Expresión Génica , Staphylococcus aureus/fisiología , Transactivadores/fisiología , Factores de Transcripción/fisiología , Animales , Antibacterianos/farmacología , Fusión Artificial Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Secuencia de Bases , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Detergentes/farmacología , Eliminación de Gen , Genes Bacterianos , Genes Reporteros , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Datos de Secuencia Molecular , N-Acetil Muramoil-L-Alanina Amidasa/análisis , Octoxinol/farmacología , Penicilinas/farmacología , Regiones Promotoras Genéticas , ARN Bacteriano/análisis , ARN Mensajero/análisis , Ratas , Staphylococcus aureus/genética , Transactivadores/genética , Transactivadores/aislamiento & purificación , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/aislamiento & purificación , Transcripción Genética , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA