RESUMEN
The 16th Workshop on Recent Issues in Bioanalysis (16th WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers the recommendations on LBA, Biomarkers/CDx and Cytometry. Part 1 (Mass Spectrometry and ICH M10) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 15 of Bioanalysis, issues 16 and 14 (2023), respectively.
Asunto(s)
Bioensayo , Informe de Investigación , Citometría de Flujo/métodos , Ligandos , Biomarcadores/análisis , Bioensayo/métodosRESUMEN
The 2022 16th Workshop on Recent Issues in Bioanalysis (WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity. Part 1 (Mass Spectrometry and ICH M10) and Part 2 (LBA, Biomarkers/CDx and Cytometry) are published in volume 15 of Bioanalysis, issues 16 and 15 (2023), respectively.
Asunto(s)
Medicamentos bajo Prescripción , Tecnología , Bioensayo/métodos , Biomarcadores/análisis , Tratamiento Basado en Trasplante de Células y TejidosRESUMEN
Introduction: We compared the performance of real-time PCR with culture-based methods for identifying bacteria in sputum samples from patients with chronic obstructive pulmonary disease (COPD) in three studies. Methods: This was an exploratory analysis of sputum samples collected during an observational study of 127 patients (AERIS; NCT01360398), phase 2 study of 145 patients (NTHI-004; NCT02075541), and phase 2b study of 606 patients (NTHI-MCAT-002; NCT03281876). Bacteria were identified by culture-based microbiological methods in local laboratories using fresh samples or by real-time PCR in a central laboratory using frozen samples. Haemophilus influenzae positivity with culture was differentiated from H. haemolyticus positivity by microarray analysis or PCR. The feasibility of bacterial detection by culture-based methods on previously frozen samples was also examined in the NTHI-004 study. Results: Bacterial detection results from both culture-based and PCR assays were available from 2,293 samples from AERIS, 974 from the NTHI-004 study, and 1736 from the NTHI-MCAT-002 study. Quantitative real-time PCR (qPCR) showed higher positivity rates than culture for H. influenzae (percentages for each study: 43.4% versus 26.2%, 47.1% versus 23.6%, 32.7% versus 10.4%) and Moraxella catarrhalis (12.9% versus 6.3%, 19.0% versus 6.0%, 15.5% versus 4.1%). In the NTHI-004 and NTHI-MCAT-002 studies, positivity rates were higher with qPCR for Streptococcus pneumoniae (15.6% versus 6.1%, 15.5% versus 3.8%); in AERIS, a lower rate with qPCR than with culture (11.0% versus 17.4%) was explained by misidentification of S. pseudopneumoniae/mitis isolates via conventional microbiological methods. Concordance analysis showed lowest overall agreement for H. influenzae (82.0%, 75.6%, 77.6%), due mainly to culture-negative/qPCR-positive samples, indicating lower sensitivity of the culture-based methods. The lowest positive agreement (culture-positive/qPCR-positive samples) was observed for S. pneumoniae (35.1%, 71.2%, 71.2%). Bacterial load values for each species showed a proportion of culture-negative samples with a load detected by qPCR; for some samples, the loads were in line with those observed in culture-positive samples. In the NTHI-004 study, of fresh samples that tested culture-positive, less than 50% remained culture-positive when tested from freeze/thawed samples. In the NTHI-004 study, of fresh samples that tested culture-positive, less than 50% remained culture-positive when tested from freeze/thawed samples. Discussion: Real-time PCR on frozen sputum samples has enhanced sensitivity and specificity over culture-based methods, supporting its use for the identification of common respiratory bacterial species in patients with COPD.
RESUMEN
Background: The burden of chronic obstructive pulmonary disease (COPD) in the Asia-Pacific region is projected to increase. Data from other regions show bacterial and viral infections can trigger acute exacerbations of COPD (AECOPD). Methods: This 1-year prospective epidemiological study (ClinicalTrials.gov identifier: NCT03151395) of patients with moderate to very severe COPD in Hong Kong, the Philippines, South Korea and Taiwan assessed the prevalence in sputum samples (by culture and PCR) of bacterial and viral pathogens during stable COPD and AECOPD. The odds of experiencing an exacerbation was evaluated for pathogen presence, acquisition and apparition. Health-related quality of life (HRQOL) was assessed. Results: 197 patients provided 983 sputum samples, with 226 provided during exacerbation episodes. The mean yearly AECOPD incidence rate was 1.27 per patient. The most prevalent bacteria by PCR at exacerbation were Haemophilus influenzae (Hi) and Moraxella catarrhalis (Mcat); Mcat prevalence was higher at exacerbation than at stable state. Virus prevalence was low, other than for human rhinovirus (HRV) (8.1%, stable state; 16.6%, exacerbation). The odds ratio (95% CI) for an exacerbation (versus stable state) was statistically significant for the presence, acquisition and apparition of Hi (2.20, 1.26-3.89; 2.43, 1.11-5.35; 2.32, 1.20-4.46, respectively), Mcat (2.24, 1.30-3.88; 5.47, 2.16-13.86; 3.45, 1.71-6.98, respectively) and HRV (2.12, 1.15-3.91; 2.22, 1.09-4.54; 2.09, 1.11-3.91, respectively). HRQOL deteriorated according to the number of exacerbations experienced. Conclusion: In patients with COPD in the Asia-Pacific region, the presence of Hi, Mcat or HRV in sputum samples significantly increased the odds of an exacerbation, providing further evidence of potential roles in triggering AECOPD.
RESUMEN
We performed a 2-year prospective cohort study to determine the incidence of dengue in Angoda, Colombo district, Sri Lanka (NCT02570152). The primary objective was to determine the incidence of acute febrile illness (AFI) because of laboratory confirmed dengue (LCD). Secondary objectives were to determine AFI incidence because of non-LCD, describe AFI symptoms, and estimate AFI incidence because of LCD by dengue virus (DENV)-type and age group. Participants from households with at least one minor and one adult (≤50 years) were enrolled and followed with scheduled weekly visits and, in case of AFI, unscheduled visits. Blood was collected for DENV detection at AFI visits, and symptoms recorded during the 7-day period following AFI onset. A total of 2,004 participants were enrolled (971 children, and 1,033 adults). A total of 55 LCD episodes were detected (overall incidence of 14.2 per 1,000 person-years). Incidence was the highest among children < 5 years (21.3 per 1,000 person-years) and 5-11 years (22.7 per 1,000 person-years), compared with adults ≥ 18 years (9.2 per 1,000 person-years). LCD was mostly (83.6%) caused by DENV-2 (n = 46), followed by DENV-1 (n = 6) and DENV-3 (n = 3). Common symptoms of LCD were headache, fatigue, myalgia, loss of appetite, and arthralgia. Incidence of AFI because of non-LCD was 47.3 per 1,000 person-years. In conclusion, this study reports the LCD incidence for a DENV-2 dominated epidemic that is comparable to the incidence of suspected dengue reported passively for 2017, one of the worst outbreaks in recent history.
Asunto(s)
Dengue/epidemiología , Fiebre/etiología , Enfermedad Aguda , Adolescente , Adulto , Distribución por Edad , Niño , Preescolar , Estudios de Cohortes , Escolaridad , Femenino , Humanos , Incidencia , Lactante , Masculino , Estudios Prospectivos , Clase Social , Sri Lanka/epidemiología , Adulto JovenRESUMEN
BACKGROUND: Disorganized angiogenesis is associated with several pathologies, including cancer. The identification of new genes that control tumor neovascularization can provide novel insights for future anti-cancer therapies. Sprouty1 (SPRY1), an inhibitor of the MAPK pathway, might be one of these new genes. We identified SPRY1 by comparing the transcriptomes of untreated endothelial cells with those of endothelial cells treated by the angiostatic agent 16 K prolactin (16 K hPRL). In the present study, we aimed to explore the potential function of SPRY1 in angiogenesis. RESULTS: We confirmed 16 K hPRL induced up-regulation of SPRY1 in primary endothelial cells. In addition, we demonstrated the positive SPRY1 regulation in a chimeric mouse model of human colon carcinoma in which 16 K hPRL treatment was shown to delay tumor growth. Expression profiling by qRT-PCR with species-specific primers revealed that induction of SPRY1 expression by 16 K hPRL occurs only in the (murine) endothelial compartment and not in the (human) tumor compartment. The regulation of SPRY1 expression was NF-κB dependent. Partial SPRY1 knockdown by RNA interference protected endothelial cells from apoptosis as well as increased endothelial cell proliferation, migration, capillary network formation, and adhesion to extracellular matrix proteins. SPRY1 knockdown was also shown to affect the expression of cyclinD1 and p21 both involved in cell-cycle regulation. These findings are discussed in relation to the role of SPRY1 as an inhibitor of ERK/MAPK signaling and to a possible explanation of its effect on cell proliferation. CONCLUSIONS: Taken together, these results suggest that SPRY1 is an endogenous angiogenesis inhibitor.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana/metabolismo , Neovascularización Patológica/metabolismo , Fragmentos de Péptidos/metabolismo , Fosfoproteínas/metabolismo , Prolactina/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Western Blotting , Bovinos , Adhesión Celular/efectos de los fármacos , Adhesión Celular/genética , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Células HCT116 , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Desnudos , Neovascularización Patológica/genética , Fragmentos de Péptidos/farmacología , Fosfoproteínas/genética , Prolactina/farmacología , ARN Interferente Pequeño , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The 16-kDa N-terminal fragment of human prolactin (16K hPRL) is a potent angiostatic factor that inhibits tumor growth in mouse models. Using microarray experiments, we have dissected how the endothelial-cell genome responds to 16K hPRL treatment. We found 216 genes that show regulation by 16K hPRL, of which a large proportion turned out to be associated with the process of immunity. 16K hPRL induces expression of various chemokines and endothelial adhesion molecules. These expressions, under the control of nuclear factor-kappaB, result in an enhanced leukocyte-endothelial cell interaction. Furthermore, analysis of B16-F10 tumor tissues reveals a higher expression of adhesion molecules (intercellular adhesion molecule 1, vascular cell adhesion molecule 1, or E-selectin) in endothelial cells and a significantly higher number of infiltrated leukocytes within the tumor treated with 16K hPRL compared with the untreated ones. In conclusion, this study describes a new antitumor mechanism of 16K hPRL. Because cellular immunity against tumor cells is a crucial step in therapy, the discovery that treatment with 16K hPRL overcomes tumor-induced anergy may become important for therapeutic perspectives.
Asunto(s)
Proteínas Angiostáticas/farmacología , Anergia Clonal/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Expresión Génica/efectos de los fármacos , FN-kappa B/fisiología , Fragmentos de Péptidos/farmacología , Prolactina/farmacología , Animales , Adhesión Celular , Anergia Clonal/genética , Endotelio Vascular/inmunología , Humanos , Leucocitos/efectos de los fármacos , Leucocitos/inmunología , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones , FN-kappa B/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patologíaRESUMEN
BACKGROUND: Despite the importance of vaccinating children younger than 5 years, few studies evaluating vaccine prevention of influenza have been reported in this age group. We evaluated efficacy of an inactivated quadrivalent influenza vaccine (IIV4) in children aged 6-35 months. METHODS: In this phase 3, observer-blinded, multinational trial, healthy children from 13 countries in Europe, Central America, and Asia were recruited in five independent cohorts, each in a different influenza season. Participants were randomly assigned (1:1) to either IIV4 (15 µg haemagglutinin antigen per strain per 0·5 mL dose; a single dose on day 0 for vaccine-primed children, and two doses, on days 0 and 28, for vaccine-unprimed children) or to one or two doses of a non-influenza control vaccine. Primary endpoints were moderate-to-severe influenza or all influenza (irrespective of disease severity) confirmed by RT-PCR on nasal swabs. Cultured isolates were further characterised as antigenically matched or mismatched to vaccine strains. Efficacy was assessed in the per-protocol cohort and total vaccinated cohort (time-to-event analysis), and safety was assessed in the total vaccinated cohort. FINDINGS: Between Oct 1, 2011, and Dec 31, 2014, 12â018 children were recruited into the total vaccinated cohort (6006 children in the IIV4 group and 6012 children in the control group). 356 (6%) children in the IIV4 group and 693 (12%) children in the control group had at least one case of RT-PCR-confirmed influenza. Of these 1049 influenza strains, 138 (13%) were A/H1N1, 529 (50%) were A/H3N2, 69 (7%) were B/Victoria, and 316 (30%) were B/Yamagata. Overall, 539 (64%) of 848 antigenically characterised isolates were vaccine-mismatched (16 [15%] of 105 for A/H1N1; 368 [97%] of 378 for A/H3N2; 54 [86%] of 63 for B/Victoria; 101 [33%] of 302 for B/Yamagata). Vaccine efficacy was 63% (97·5% CI 52-72) against moderate-to-severe influenza and 50% (42-57) against all influenza in the per-protocol cohort, and 64% (53-73) against moderate-to-severe influenza and 50% (42-57) against all influenza in the total vaccinated cohort. There were no clinically meaningful safety differences between IIV4 and control. INTERPRETATION: IIV4 prevented influenza A and B in children aged 6-35 months despite high levels of vaccine mismatch. Vaccine efficacy was highest against moderate-to-severe disease, which is the most clinically important endpoint associated with greatest burden. FUNDING: GlaxoSmithKline Biologicals SA.
Asunto(s)
Vacunas contra la Influenza , Gripe Humana/prevención & control , Preescolar , Femenino , Humanos , Lactante , Gripe Humana/epidemiología , Internacionalidad , Masculino , Estaciones del Año , Método Simple CiegoRESUMEN
Peripartum cardiomyopathy (PPCM) is a life-threatening pregnancy-associated cardiomyopathy in previously healthy women. Although PPCM is driven in part by the 16-kDa N-terminal prolactin fragment (16K PRL), the underlying molecular mechanisms are poorly understood. We found that 16K PRL induced microRNA-146a (miR-146a) expression in ECs, which attenuated angiogenesis through downregulation of NRAS. 16K PRL stimulated the release of miR-146a-loaded exosomes from ECs. The exosomes were absorbed by cardiomyocytes, increasing miR-146a levels, which resulted in a subsequent decrease in metabolic activity and decreased expression of Erbb4, Notch1, and Irak1. Mice with cardiomyocyte-restricted Stat3 knockout (CKO mice) exhibited a PPCM-like phenotype and displayed increased cardiac miR-146a expression with coincident downregulation of Erbb4, Nras, Notch1, and Irak1. Blocking miR-146a with locked nucleic acids or antago-miRs attenuated PPCM in CKO mice without interrupting full-length prolactin signaling, as indicated by normal nursing activities. Finally, miR-146a was elevated in the plasma and hearts of PPCM patients, but not in patients with dilated cardiomyopathy. These results demonstrate that miR-146a is a downstream-mediator of 16K PRL that could potentially serve as a biomarker and therapeutic target for PPCM.
Asunto(s)
Cardiomiopatías/sangre , Cardiomiopatías/genética , MicroARNs/sangre , Complicaciones Cardiovasculares del Embarazo/sangre , Prolactina/metabolismo , Animales , Biomarcadores/sangre , Células Endoteliales/citología , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Neovascularización Patológica , Periodo Periparto , Embarazo , Complicaciones Cardiovasculares del Embarazo/metabolismo , Ratas , Factor de Transcripción STAT3/metabolismo , Transducción de SeñalRESUMEN
BACKGROUND: MicroRNAs (miRNAs) are endogenously expressed small non-coding RNAs that regulate gene expression at post-transcriptional level. The recent discovery of the involvement of these RNAs in the control of angiogenesis renders them very attractive in the development of new approaches for restoring the angiogenic balance. Whereas miRNA-21 has been demonstrated to be highly expressed in endothelial cells, the potential function of this miRNA in angiogenesis has never been investigated. METHODOLOGY/PRINCIPAL FINDINGS: We first observed in endothelial cells a negative regulation of miR-21 expression by serum and bFGF, two pro-angiogenic factors. Then using in vitro angiogenic assays, we observed that miR-21 acts as a negative modulator of angiogenesis. miR-21 overexpression reduced endothelial cell proliferation, migration and the ability of these cells to form tubes whereas miR-21 inhibition using a LNA-anti-miR led to opposite effects. Expression of miR-21 in endothelial cells also led to a reduction in the organization of actin into stress fibers, which may explain the decrease in cell migration. Further mechanistic studies showed that miR-21 targets RhoB, as revealed by a decrease in RhoB expression and activity in miR-21 overexpressing cells. RhoB silencing impairs endothelial cell migration and tubulogenesis, thus providing a possible mechanism for miR-21 to inhibit angiogenesis. Finally, the therapeutic potential of miR-21 as an angiogenesis inhibitor was demonstrated in vivo in a mouse model of choroidal neovascularization. CONCLUSIONS/SIGNIFICANCE: Our results identify miR-21 as a new angiogenesis inhibitor and suggest that inhibition of cell migration and tubulogenesis is mediated through repression of RhoB.