RESUMEN
Glutamine is consumed by rapidly proliferating cells and can provide the carbon and nitrogen required for growth through various metabolic pathways. However, delineating the metabolic fate of glutamine is challenging to interrogate in vivo. Hyperpolarized magnetic resonance, by providing high transient nuclear magnetic resonance signals, provides an approach to measure fast biochemical processes in vivo. Aminohydrolysis of glutamine at carbon-5 plays an important role in providing nitrogen and carbon for multiple pathways. Here, we provide a synthetic strategy for isotope-enriched forms of glutamine that prolongs glutamine-C5 relaxation times and thereby reveals in vivo reactions involving carbon-5. We investigate multiple enrichment states, finding [5-13C,4,4-2H2,5-15N]-L-glutamine to be optimal for hyperpolarized measurement of glutamine conversion to glutamate in vivo. Leveraging this compound, we explore pancreatic cancer glutamine metabolism in vivo. Taken together, this work provides a means for studying glutamine metabolic flux in vivo and demonstrates on-target effects of metabolic enzyme inhibitors.
Asunto(s)
Glutaminasa , Glutamina , Biomarcadores/metabolismo , Ciclo del Ácido Cítrico , Glutaminasa/metabolismo , Glutamina/metabolismo , Humanos , MetabolómicaRESUMEN
PURPOSE: To generate dynamic, volumetric maps of hyperpolarized [1-13 C]pyruvate and its metabolic products in vivo. METHODS: Maps of chemical species were generated with iterative least squares (IDEAL) reconstruction from multiecho echo-planar imaging (EPI) of phantoms of thermally polarized 13 C-labeled chemicals and mice injected with hyperpolarized [1-13 C]pyruvate on a preclinical 3T scanner. The quality of the IDEAL decomposition of single-shot and multishot phantom images was evaluated using quantitative results from a simple pulse-and-acquire sequence as the gold standard. Time course and area-under-the-curve plots were created to analyze the distribution of metabolites in vivo. RESULTS: Improved separation of chemical species by IDEAL, evaluated by the amount of residual signal measured for chemicals not present in the phantoms, was observed as the number of EPI shots was increased from one to four. Dynamic three-dimensional metabolite maps of [1-13 C]pyruvate,[1-13 C]pyruvatehydrate, [1-13 C]lactate, [1-13 C]bicarbonate, and [1-13 C]alanine generated by IDEAL from interleaved multishot multiecho EPI of live mice were used to construct time course and area-under-the-curve graphs for the heart, kidneys, and liver, which showed good agreement with previously published results. CONCLUSIONS: IDEAL decomposition of multishot multiecho 13C EPI images is a simple, yet robust method for generating high-quality dynamic volumetric maps of hyperpolarized [1-13 C]pyruvate and its products in vivo and has potential applications for the assessment of multiorgan metabolic phenomena.
Asunto(s)
Imagen Eco-Planar , Ácido Pirúvico , Animales , Isótopos de Carbono , Ácido Láctico , Análisis de los Mínimos Cuadrados , Imagen por Resonancia Magnética , Ratones , Fantasmas de ImagenRESUMEN
A vexing problem in mitochondrial medicine is our limited capacity to evaluate the extent of brain disease in vivo. This limitation has hindered our understanding of the mechanisms that underlie the imaging phenotype in the brain of patients with mitochondrial diseases and our capacity to identify new biomarkers and therapeutic targets. Using comprehensive imaging, we analyzed the metabolic network that drives the brain structural and metabolic features of a mouse model of pyruvate dehydrogenase deficiency (PDHD). As the disease progressed in this animal, in vivo brain glucose uptake and glycolysis increased. Propionate served as a major anaplerotic substrate, predominantly metabolized by glial cells. A combination of propionate and a ketogenic diet extended lifespan, improved neuropathology, and ameliorated motor deficits in these animals. Together, intermediary metabolism is quite distinct in the PDHD brain-it plays a key role in the imaging phenotype, and it may uncover new treatments for this condition.
Asunto(s)
Encéfalo , Glucosa , Propionatos , Enfermedad por Deficiencia del Complejo Piruvato Deshidrogenasa , Animales , Enfermedad por Deficiencia del Complejo Piruvato Deshidrogenasa/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Glucosa/metabolismo , Propionatos/metabolismo , Ratones , Dieta Cetogénica , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Masculino , GlucólisisRESUMEN
The ability to break down fructose is dependent on ketohexokinase (KHK) that phosphorylates fructose to fructose-1-phosphate (F1P). We show that KHK expression is tightly controlled and limited to a small number of organs and is down-regulated in liver and intestinal cancer cells. Loss of fructose metabolism is also apparent in hepatocellular adenoma and carcinoma (HCC) patient samples. KHK overexpression in liver cancer cells results in decreased fructose flux through glycolysis. We then developed a strategy to detect this metabolic switch in vivo using hyperpolarized magnetic resonance spectroscopy. Uniformly deuterating [2-13C]-fructose and dissolving in D2O increased its spin-lattice relaxation time (T1) fivefold, enabling detection of F1P and its loss in models of HCC. In summary, we posit that in the liver, fructolysis to F1P is lost in the development of cancer and can be used as a biomarker of tissue function in the clinic using metabolic imaging.