Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Nature ; 617(7961): 629-636, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37138085

RESUMEN

In natural photosynthesis, the light-driven splitting of water into electrons, protons and molecular oxygen forms the first step of the solar-to-chemical energy conversion process. The reaction takes place in photosystem II, where the Mn4CaO5 cluster first stores four oxidizing equivalents, the S0 to S4 intermediate states in the Kok cycle, sequentially generated by photochemical charge separations in the reaction center and then catalyzes the O-O bond formation chemistry1-3. Here, we report room temperature snapshots by serial femtosecond X-ray crystallography to provide structural insights into the final reaction step of Kok's photosynthetic water oxidation cycle, the S3→[S4]→S0 transition where O2 is formed and Kok's water oxidation clock is reset. Our data reveal a complex sequence of events, which occur over micro- to milliseconds, comprising changes at the Mn4CaO5 cluster, its ligands and water pathways as well as controlled proton release through the hydrogen-bonding network of the Cl1 channel. Importantly, the extra O atom Ox, which was introduced as a bridging ligand between Ca and Mn1 during the S2→S3 transition4-6, disappears or relocates in parallel with Yz reduction starting at approximately 700 µs after the third flash. The onset of O2 evolution, as indicated by the shortening of the Mn1-Mn4 distance, occurs at around 1,200 µs, signifying the presence of a reduced intermediate, possibly a bound peroxide.


Asunto(s)
Oxígeno , Fotosíntesis , Complejo de Proteína del Fotosistema II , Oxidación-Reducción , Oxígeno/química , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Protones , Agua/química , Agua/metabolismo , Manganeso/química , Manganeso/metabolismo , Calcio/química , Calcio/metabolismo , Peróxidos/metabolismo
3.
Photosynth Res ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662327

RESUMEN

In Photosystem II, light-induced water splitting occurs via the S state cycle of the CaMn4O5-cluster. To understand the role of various possible conformations of the CaMn4O5-cluster in this process, the temperature dependence of the S1 → S2 and S2 → S3 state transitions, induced by saturating laser flashes, was studied in spinach photosystem II membrane preparations under different conditions. The S1 → S2 transition temperature dependence was shown to be much dependent on the type of the cryoprotectant and presence of 3.5% methanol, resulting in the variation of transition half-inhibition temperature by 50 K. No similar effect was observed for the S2 → S3 state transition, for which we also show that both the low spin g = 2.0 multiline and high spin g = 4.1 EPR configurations of the S2 state advance with similar efficiency to the S3 state, both showing a transition half-inhibition temperature of 240 K. This was further confirmed by following the appearance of the Split S3 EPR signal. The results are discussed in relevance to the functional and structural heterogeneity of the water oxidizing complex intermediates in photosystem II.

4.
Proc Natl Acad Sci U S A ; 117(1): 141-145, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31848244

RESUMEN

Knowledge of the manganese oxidation states of the oxygen-evolving Mn4CaO5 cluster in photosystem II (PSII) is crucial toward understanding the mechanism of biological water oxidation. There is a 4 decade long debate on this topic that historically originates from the observation of a multiline electron paramagnetic resonance (EPR) signal with effective total spin of S = 1/2 in the singly oxidized S2 state of this cluster. This signal implies an overall oxidation state of either Mn(III)3Mn(IV) or Mn(III)Mn(IV)3 for the S2 state. These 2 competing assignments are commonly known as "low oxidation (LO)" and "high oxidation (HO)" models of the Mn4CaO5 cluster. Recent advanced EPR and Mn K-edge X-ray spectroscopy studies converge upon the HO model. However, doubts about these assignments have been voiced, fueled especially by studies counting the number of flash-driven electron removals required for the assembly of an active Mn4CaO5 cluster starting from Mn(II) and Mn-free PSII. This process, known as photoactivation, appeared to support the LO model since the first oxygen is reported to evolve already after 7 flashes. In this study, we improved the quantum yield and sensitivity of the photoactivation experiment by employing PSII microcrystals that retained all protein subunits after complete manganese removal and by oxygen detection via a custom built thin-layer cell connected to a membrane inlet mass spectrometer. We demonstrate that 9 flashes by a nanosecond laser are required for the production of the first oxygen, which proves that the HO model provides the correct description of the Mn4CaO5 cluster's oxidation states.


Asunto(s)
Manganeso/metabolismo , Oxígeno/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Cianobacterias , Espectroscopía de Resonancia por Spin del Electrón/métodos , Rayos Láser , Luz , Compuestos de Manganeso , Modelos Químicos , Oxidación-Reducción , Óxidos , Complejo de Proteína del Fotosistema II/química , Thermosynechococcus , Agua/química
5.
Plant J ; 106(5): 1443-1454, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33772896

RESUMEN

C4 photosynthesis is a biochemical pathway that operates across mesophyll and bundle sheath (BS) cells to increase CO2 concentration at the site of CO2 fixation. C4 plants benefit from high irradiance but their efficiency decreases under shade, causing a loss of productivity in crop canopies. We investigated shade acclimation responses of Setaria viridis, a model monocot of NADP-dependent malic enzyme subtype, focussing on cell-specific electron transport capacity. Plants grown under low light (LL) maintained CO2 assimilation rates similar to high light plants but had an increased chlorophyll and light-harvesting-protein content, predominantly in BS cells. Photosystem II (PSII) protein abundance, oxygen-evolving activity and the PSII/PSI ratio were enhanced in LL BS cells, indicating a higher capacity for linear electron flow. Abundances of PSI, ATP synthase, Cytochrome b6 f and the chloroplast NAD(P)H dehydrogenase complex, which constitute the BS cyclic electron flow machinery, were also increased in LL plants. A decline in PEP carboxylase activity in mesophyll cells and a consequent shortage of reducing power in BS chloroplasts were associated with a more oxidised plastoquinone pool in LL plants and the formation of PSII - light-harvesting complex II supercomplexes with an increased oxygen evolution rate. Our results suggest that the supramolecular composition of PSII in BS cells is adjusted according to the redox state of the plastoquinone pool. This discovery contributes to the understanding of the acclimation of PSII activity in C4 plants and will support the development of strategies for crop improvement, including the engineering of C4 photosynthesis into C3 plants.


Asunto(s)
Malato-Deshidrogenasa (NADP+)/metabolismo , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo , Setaria (Planta)/fisiología , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/enzimología , Transporte de Electrón , Luz , Malato-Deshidrogenasa (NADP+)/genética , Células del Mesófilo/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/efectos de la radiación , Regulación hacia Arriba
6.
Physiol Plant ; 173(2): 555-567, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33860946

RESUMEN

Photosynthetic production of molecular hydrogen (H2 ) by cyanobacteria and green algae is a potential source of renewable energy. These organisms are capable of water biophotolysis by taking advantage of photosynthetic apparatus that links water oxidation at Photosystem II and reduction of protons to H2 downstream of Photosystem I. Although the process has a theoretical potential to displace fossil fuels, photosynthetic H2 production in its current state is not yet efficient enough for industrial applications due to a number of physiological, biochemical, and engineering barriers. This article presents a short overview of the metabolic pathways and enzymes involved in H2 photoproduction in cyanobacteria and green algae and our present understanding of the mechanisms of this process. We also summarize recent advances in engineering photosynthetic cell factories capable of overcoming the major barriers to efficient and sustainable H2 production.


Asunto(s)
Chlorophyta , Hidrogenasas , Chlorophyta/genética , Chlorophyta/metabolismo , Hidrógeno , Hidrogenasas/genética , Hidrogenasas/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo
7.
Plant Physiol ; 179(4): 1739-1753, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30538167

RESUMEN

Photosystem II (PSII) is a supramolecular complex containing over 30 protein subunits and a large set of cofactors, including various pigments and quinones as well as Mn, Ca, Cl, and Fe ions. Eukaryotic PSII complexes contain many subunits not found in their bacterial counterparts, including the proteins PsbP (PSII), PsbQ, PsbS, and PsbW, as well as the highly homologous, low-molecular-mass subunits PsbTn1 and PsbTn2 whose function is currently unknown. To determine the function of PsbTn1 and PsbTn2, we generated single and double psbTn1 and psbTn2 knockout mutants in Arabidopsis (Arabidopsis thaliana). Cross linking and reciprocal coimmunoprecipitation experiments revealed that PsbTn is a lumenal PSII protein situated next to the cytochrome b 559 subunit PsbE. The removal of the PsbTn proteins decreased the oxygen evolution rate and PSII core phosphorylation level but increased the susceptibility of PSII to photoinhibition and the production of reactive oxygen species. The assembly and stability of PSII were unaffected, indicating that the deficiencies of the psbTn1 psbTn2 double mutants are due to structural changes. Double mutants exhibited a higher rate of nonphotochemical quenching of excited states than the wild type and single mutants, as well as slower state transition kinetics and a lower quantum yield of PSII when grown in the field. Based on these results, we propose that the main function of the PsbTn proteins is to enable PSII to acclimate to light shifts or intense illumination.


Asunto(s)
Aclimatación , Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Proteínas del Complejo del Centro de Reacción Fotosintética/fisiología , Aclimatación/genética , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Luz , Estrés Oxidativo , Fosforilación , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/fisiología , Especies Reactivas de Oxígeno/metabolismo
8.
J Exp Bot ; 71(22): 7210-7223, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-32930769

RESUMEN

Plants can quickly and dynamically respond to spectral and intensity variations of the incident light. These responses include activation of developmental processes, morphological changes, and photosynthetic acclimation that ensure optimal energy conversion and minimal photoinhibition. Plant adaptation and acclimation to environmental changes have been extensively studied, but many details surrounding these processes remain elusive. The photosystem II (PSII)-associated protein PSB33 plays a fundamental role in sustaining PSII as well as in the regulation of the light antenna in fluctuating light. We investigated how PSB33 knock-out Arabidopsis plants perform under different light qualities. psb33 plants displayed a reduction of 88% of total fresh weight compared to wild type plants when cultivated at the boundary of UV-A and blue light. The sensitivity towards UV-A light was associated with a lower abundance of PSII proteins, which reduces psb33 plants' capacity for photosynthesis. The UV-A phenotype was found to be linked to altered phytohormone status and changed thylakoid ultrastructure. Our results collectively show that PSB33 is involved in a UV-A light-mediated mechanism to maintain a functional PSII pool in the chloroplast.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Luz , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/metabolismo
9.
J Exp Bot ; 70(21): 6321-6336, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31504725

RESUMEN

The redox state of the plastoquinone (PQ) pool in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cells was studied using single flash-induced variable fluorescence decay kinetics. During H2 production, the fluorescence decay kinetics exhibited an unusual post-illumination rise of variable fluorescence, giving a wave-like appearance. The wave showed the transient fluorescence minimum at ~60 ms after the flash, followed by a rise, reaching the transient fluorescence maximum at ~1 s after the flash, before decaying back to the initial fluorescence level. Similar wave-like fluorescence decay kinetics have been reported previously in anaerobically incubated cyanobacteria but not in green algae. From several different electron and proton transfer inhibitors used, polymyxin B, an inhibitor of type II NAD(P)H dehydrogenase (NDA2), had the effect of eliminating the fluorescence wave feature, indicating involvement of NDA2 in this phenomenon. This was further confirmed by the absence of the fluorescence wave in the Δnda2 mutant lacking NDA2. Additionally, Δnda2 mutants have also shown delayed and diminished H2 production (only 23% if compared with the wild type). Our results show that the fluorescence wave phenomenon in C. reinhardtii is observed under highly reducing conditions and is induced by the NDA2-mediated electron flow from the reduced stromal components to the PQ pool. Therefore, the fluorescence wave phenomenon is a sensitive probe for the complex network of redox reactions at the PQ pool level in the thylakoid membrane. It could be used in further characterization and improvement of the electron transfer pathways leading to H2 production in C. reinhardtii.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Hidrógeno/metabolismo , Proteínas Algáceas/metabolismo , Anaerobiosis , Chlamydomonas reinhardtii/efectos de los fármacos , Transporte de Electrón/efectos de los fármacos , Fluorescencia , Gramicidina/farmacología , Cinética , Luz , Mitocondrias/metabolismo , Mutación/genética , Fotosíntesis/efectos de los fármacos , Complejo de Proteína del Fotosistema I/metabolismo , Plastoquinona/metabolismo
10.
Physiol Plant ; 166(1): 165-180, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30693529

RESUMEN

High solar flux is known to diminish photosynthetic growth rates, reducing biomass productivity and lowering disease tolerance. Photosystem II (PSII) of plants is susceptible to photodamage (also known as photoinactivation) in strong light, resulting in severe loss of water oxidation capacity and destruction of the water-oxidizing complex (WOC). The repair of damaged PSIIs comes at a high energy cost and requires de novo biosynthesis of damaged PSII subunits, reassembly of the WOC inorganic cofactors and membrane remodeling. Employing membrane-inlet mass spectrometry and O2 -polarography under flashing light conditions, we demonstrate that newly synthesized PSII complexes are far more susceptible to photodamage than are mature PSII complexes. We examined these 'PSII birth defects' in barley seedlings and plastids (etiochloroplasts and chloroplasts) isolated at various times during de-etiolation as chloroplast development begins and matures in synchronization with thylakoid membrane biogenesis and grana membrane formation. We show that the degree of PSII photodamage decreases simultaneously with biogenesis of the PSII turnover efficiency measured by O2 -polarography, and with grana membrane stacking, as determined by electron microscopy. Our data from fluorescence, QB -inhibitor binding, and thermoluminescence studies indicate that the decline of the high-light susceptibility of PSII to photodamage is coincident with appearance of electron transfer capability QA - → QB during de-etiolation. This rate depends in turn on the downstream clearing of electrons upon buildup of the complete linear electron transfer chain and the formation of stacked grana membranes capable of longer-range energy transfer.


Asunto(s)
Cloroplastos/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Cloroplastos/ultraestructura , Espectrometría de Masas , Microscopía Electrónica , Biogénesis de Organelos , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/ultraestructura
11.
Photosynth Res ; 136(1): 93-106, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28924898

RESUMEN

Photosystem II (PS II) contains two redox-active tyrosine residues on the donor side at symmetrical positions to the primary donor, P680. TyrZ, part of the water-oxidizing complex, is a preferential fast electron donor while TyrD is a slow auxiliary donor to P680+. We used PS II membranes from spinach which were depleted of the water oxidation complex (Mn-depleted PS II) to study electron donation from both tyrosines by time-resolved EPR spectroscopy under visible and far-red continuous light and laser flash illumination. Our results show that under both illumination regimes, oxidation of TyrD occurs via equilibrium with TyrZ• at pH 4.7 and 6.3. At pH 8.5 direct TyrD oxidation by P680+ occurs in the majority of the PS II centers. Under continuous far-red light illumination these reactions were less effective but still possible. Different photochemical steps were considered to explain the far-red light-induced electron donation from tyrosines and localization of the primary electron hole (P680+) on the ChlD1 in Mn-depleted PS II after the far-red light-induced charge separation at room temperature is suggested.


Asunto(s)
Radicales Libres/metabolismo , Luz , Complejo de Proteína del Fotosistema II/metabolismo , Spinacia oleracea/metabolismo , Spinacia oleracea/efectos de la radiación , Tirosina/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Electrones , Cinética , Manganeso/metabolismo , Oxidación-Reducción
12.
Biochim Biophys Acta Bioenerg ; 1858(6): 407-417, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28235460

RESUMEN

Tyrosine D (TyrD) is an auxiliary redox active tyrosine residue in photosystem II (PSII). The mechanism of TyrD oxidation was investigated by EPR spectroscopy, flash-induced fluorescence decay and thermoluminescence measurements in PSII enriched membranes from spinach. PSII membranes were chemically treated with 3mM ascorbate and 1mM diaminodurene and subsequent washing, leading to the complete reduction of TyrD. TyrD oxidation kinetics and competing recombination reactions were measured after a single saturating flash in the absence and presence of DCMU (inhibitor of the QB-site) in the pH range of 4.7-8.5. Two kinetic phases of TyrD oxidation were observed by the time resolved EPR spectroscopy - the fast phase (msec-sec time range) and the pH dependent slow phase (tens of seconds time range). In the presence of DCMU, TyrD oxidation kinetics was monophasic in the entire pH range, i.e. only the fast kinetics was observed. The results obtained from the fluorescence and thermoluminescence analysis show that when forward electron transport is blocked in the presence of DCMU, the S2QA- recombination outcompetes the slow phase of TyrD oxidation by the S2 state. Modelling of the whole complex of these electron transfer events associated with TyrD oxidation fitted very well with our experimental data. Based on these data, structural information and theoretical considerations we confirm our assignment of the fast and slow oxidation kinetics to two populations of PSII centers with different water positions (proximal and distal) in the TyrD vicinity.


Asunto(s)
Complejo de Proteína del Fotosistema II/química , Tirosina/química , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Fluorometría , Concentración de Iones de Hidrógeno , Cinética , Mediciones Luminiscentes , Modelos Químicos , Oxidación-Reducción , Fotoquímica , Complejo de Proteína del Fotosistema II/efectos de la radiación , Spinacia oleracea , Temperatura
13.
Biochim Biophys Acta Bioenerg ; 1858(2): 147-155, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27823941

RESUMEN

The tyrosine residue D2-Tyr160 (TyrD) in photosystem II (PSII) can be oxidized through charge equilibrium with the oxygen evolving complex in PSII. The kinetics of the electron transfer from TyrD has been followed using time-resolved EPR spectroscopy after triggering the oxidation of pre-reduced TyrD by a short laser flash. After its oxidation TyrD is observed as a neutral radical (TyrD•) indicating that the oxidation is coupled to a deprotonation event. The redox state of TyrD was reported to be determined by the two water positions identified in the crystal structure of PSII [Saito et al. (2013) Proc. Natl. Acad. Sci. USA 110, 7690]. To assess the mechanism of the proton coupled electron transfer of TyrD the oxidation kinetics has been followed in the presence of deuterated buffers, thereby resolving the kinetic isotope effect (KIE) of TyrD oxidation at different H/D concentrations. Two kinetic phases of TyrD oxidation - the fast phase (msec-sec time range) and the slow phase (tens of seconds time range) were resolved as was previously reported [Vass and Styring (1991) Biochemistry 30, 830]. In the presence of deuterated buffers the kinetics was significantly slower compared to normal buffers. Furthermore, although the kinetics were faster at both high pH and pD values the observed KIE was found to be similar (~2.4) over the whole pL range investigated. We assign the fast and slow oxidation phases to two populations of PSII centers with different water positions, proximal and distal respectively, and discuss possible deprotonation events in the vicinity of TyrD.


Asunto(s)
Complejo de Proteína del Fotosistema II/metabolismo , Tirosina/metabolismo , Deuterio/metabolismo , Transporte de Electrón/fisiología , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Cinética , Oxidación-Reducción , Protones , Agua/metabolismo
14.
Biochim Biophys Acta ; 1857(9): 1524-1533, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27220875

RESUMEN

Photosystem II is a protein complex embedded in the thylakoid membrane of photosynthetic organisms and performs the light driven water oxidation into electrons and molecular oxygen that initiate the photosynthetic process. This important complex is composed of more than two dozen of intrinsic and peripheral subunits, of those half are low molecular mass proteins. PsbY is one of those low molecular mass proteins; this 4.7-4.9kDa intrinsic protein seems not to bind any cofactors. Based on structural data from cyanobacterial and red algal Photosystem II PsbY is located closely or in direct contact with cytochrome b559. Cytb559 consists of two protein subunits (PsbE and PsbF) ligating a heme-group in-between them. While the exact function of this component in Photosystem II has not yet been clarified, a crucial role for assembly and photo-protection in prokaryotic complexes has been suggested. One unique feature of Cytb559 is its redox-heterogeneity, forming high, medium and low potential, however, neither origin nor mechanism are known. To reveal the function of PsbY within Photosystem II of Arabidopsis we have analysed PsbY knock-out plants and compared them to wild type and to complemented mutant lines. We show that in the absence of PsbY protein Cytb559 is only present in its oxidized, low potential form and plants depleted of PsbY were found to be more susceptible to photoinhibition.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Grupo Citocromo b/fisiología , Complejo de Proteína del Fotosistema II/fisiología , Ureohidrolasas/fisiología , Espectroscopía de Resonancia por Spin del Electrón , Oxidación-Reducción , Dosimetría Termoluminiscente
15.
Biochim Biophys Acta ; 1857(9): 1627-1640, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27372198

RESUMEN

While the majority of the photochemical states and pathways related to the biological capture of solar energy are now well understood and provide paradigms for artificial device design, additional low-energy states have been discovered in many systems with obscure origins and significance. However, as low-energy states are naively expected to be critical to function, these observations pose important challenges. A review of known properties of low energy states covering eight photochemical systems, and options for their interpretation, are presented. A concerted experimental and theoretical research strategy is suggested and outlined, this being aimed at providing a fully comprehensive understanding.


Asunto(s)
Fotosíntesis , Proteínas Bacterianas/química , Complejos de Proteína Captadores de Luz/química , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema II/química , Ficobilisomas/química
16.
Physiol Plant ; 161(2): 182-195, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28429526

RESUMEN

Cyanobacteria play a pivotal role as the primary producer in many aquatic ecosystems. The knowledge on the interacting processes of cyanobacteria with its environment - abiotic and biotic factors - is still very limited. Many potential exocytoplasmic proteins in the model unicellular cyanobacterium Synechocystis PCC 6803 have unknown functions and their study is essential to improve our understanding of this photosynthetic organism and its potential for biotechnology use. Here we characterize a deletion mutant of Synechocystis PCC 6803, Δsll1783, a strain that showed a remarkably high light resistance which is related with its lower thylakoid membrane formation. Our results suggests Sll1783 to be involved in a mechanism of polysaccharide degradation and uptake and we hypothesize it might function as a sensor for cell density in cyanobacterial cultures.


Asunto(s)
Oxigenasas de Función Mixta/metabolismo , Polisacáridos Bacterianos/metabolismo , Synechocystis/enzimología , Tilacoides/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Espectrofotometría , Synechocystis/crecimiento & desarrollo , Synechocystis/ultraestructura
17.
Phys Chem Chem Phys ; 19(36): 25052-25058, 2017 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-28879367

RESUMEN

Non-activated charge transport has been demonstrated in terephthalate-functionalized conducting redox polymers. The transition from a temperature-activated conduction mechanism to a residual scattering mechanism was dependent on the doping level. The latter mechanism is associated with apparent negative activation barriers to charge transport and is generally found in polymer materials with a high degree of order. Crystallographic data, however, suggested a low degree of order in this polymer, indicating the existence of interconnected crystal domains in the predominantly amorphous polymer matrix through which the charge was transported. We have thus shown that the addition of bulky pendant groups to conducting polymers does not prevent efficient charge transport via the residual scattering mechanism with low barriers to charge transport.

18.
Plant J ; 84(2): 360-73, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26332430

RESUMEN

Thylakoid energy metabolism is crucial for plant growth, development and acclimation. Non-appressed thylakoids harbor several high molecular mass pigment-protein megacomplexes that have flexible compositions depending upon the environmental cues. This composition is important for dynamic energy balancing in photosystems (PS) I and II. We analysed the megacomplexes of Arabidopsis wild type (WT) plants and of several thylakoid regulatory mutants. The stn7 mutant, which is defective in phosphorylation of the light-harvesting complex (LHC) II, possessed a megacomplex composition that was strikingly different from that of the WT. Of the nine megacomplexes in total for the non-appressed thylakoids, the largest megacomplex in particular was less abundant in the stn7 mutant under standard growth conditions. This megacomplex contains both PSI and PSII and was recently shown to allow energy spillover between PSII and PSI (Nat. Commun., 6, 2015, 6675). The dynamics of the megacomplex composition was addressed by exposing plants to different light conditions prior to thylakoid isolation. The megacomplex pattern in the WT was highly dynamic. Under darkness or far red light it showed low levels of LHCII phosphorylation and resembled the stn7 pattern; under low light, which triggers LHCII phosphorylation, it resembled that of the tap38/pph1 phosphatase mutant. In contrast, solubilization of the entire thylakoid network with dodecyl maltoside, which efficiently solubilizes pigment-protein complexes from all thylakoid compartments, revealed that the pigment-protein composition remained stable despite the changing light conditions or mutations that affected LHCII (de)phosphorylation. We conclude that the composition of pigment-protein megacomplexes specifically in non-appressed thylakoids undergoes redox-dependent changes, thus facilitating maintenance of the excitation balance between the two photosystems upon changes in light conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Luz , Tilacoides/metabolismo , Aclimatación/efectos de la radiación , Arabidopsis/efectos de la radiación , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/efectos de la radiación
19.
Plant Physiol ; 167(2): 481-92, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25511433

RESUMEN

Photosystem II (PSII) is a multiprotein complex that catalyzes the light-driven water-splitting reactions of oxygenic photosynthesis. Light absorption by PSII leads to the production of excited states and reactive oxygen species that can cause damage to this complex. Here, we describe Arabidopsis (Arabidopsis thaliana) At1g71500, which encodes a previously uncharacterized protein that is a PSII auxiliary core protein and hence is named PHOTOSYSTEM II PROTEIN33 (PSB33). We present evidence that PSB33 functions in the maintenance of PSII-light-harvesting complex II (LHCII) supercomplex organization. PSB33 encodes a protein with a chloroplast transit peptide and one transmembrane segment. In silico analysis of PSB33 revealed a light-harvesting complex-binding motif within the transmembrane segment and a large surface-exposed head domain. Biochemical analysis of PSII complexes further indicates that PSB33 is an integral membrane protein located in the vicinity of LHCII and the PSII CP43 reaction center protein. Phenotypic characterization of mutants lacking PSB33 revealed reduced amounts of PSII-LHCII supercomplexes, very low state transition, and a lower capacity for nonphotochemical quenching, leading to increased photosensitivity in the mutant plants under light stress. Taken together, these results suggest a role for PSB33 in regulating and optimizing photosynthesis in response to changing light levels.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Secuencia Conservada , Membranas Intracelulares/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Clorofila/metabolismo , Fluorescencia , Genes de Plantas , Membranas Intracelulares/efectos de la radiación , Luz , Complejos de Proteína Captadores de Luz/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Fenotipo , Procesos Fotoquímicos/efectos de la radiación , Estabilidad Proteica/efectos de la radiación , Transporte de Proteínas/efectos de la radiación , Análisis de Secuencia de Proteína , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/efectos de la radiación , Tilacoides/efectos de la radiación
20.
Proc Natl Acad Sci U S A ; 110(18): 7223-8, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23589846

RESUMEN

Photobiological H2 production is an attractive option for renewable solar fuels. Sulfur-deprived cells of Chlamydomonas reinhardtii have been shown to produce hydrogen with the highest efficiency among photobiological systems. We have investigated the photosynthetic reactions during sulfur deprivation and H2 production in the wild-type and state transition mutant 6 (Stm6) mutant of Chlamydomonas reinhardtii. The incubation period (130 h) was dissected into different phases, and changes in the amount and functional status of photosystem II (PSII) were investigated in vivo by electron paramagnetic resonance spectroscopy and variable fluorescence measurements. In the wild type it was found that the amount of PSII is decreased to 25% of the original level; the electron transport from PSII was completely blocked during the anaerobic phase preceding H2 formation. This block was released during the H2 production phase, indicating that the hydrogenase withdraws electrons from the plastoquinone pool. This partly removes the block in PSII electron transport, thereby permitting electron flow from water oxidation to hydrogenase. In the Stm6 mutant, which has higher respiration and H2 evolution than the wild type, PSII was analogously but much less affected. The addition of the PSII inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea revealed that ∼80% of the H2 production was inhibited in both strains. We conclude that (i) at least in the earlier stages, most of the electrons delivered to the hydrogenase originate from water oxidation by PSII, (ii) a faster onset of anaerobiosis preserves PSII from irreversible photoinhibition, and (iii) mutants with enhanced respiratory activity should be considered for better photobiological H2 production.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Hidrógeno/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Azufre/deficiencia , Chlamydomonas reinhardtii/citología , Espectroscopía de Resonancia por Spin del Electrón , Fluorescencia , Proteínas Mutantes/metabolismo , Oxígeno/metabolismo , Proteínas de Plantas/metabolismo , Estabilidad Proteica , Solubilidad , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA