Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gastroenterology ; 2020 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-32428506

RESUMEN

BACKGROUND & AIMS: Intratumor heterogeneity and divergent clonal lineages within and among primary and recurrent hepatocellular carcinomas (HCCs) produce challenges to patient management. We investigated genetic and epigenetic variations within liver tumors, among hepatic lesions, and between primary and relapsing tumors. METHODS: Tumor and matched nontumor liver specimens were collected from 113 patients who underwent partial hepatectomy for primary or recurrent HCC at 2 hospitals in Hong Kong. We performed whole-genome, whole-exome, or targeted capture sequencing analyses of 356 HCC specimens collected from multiple tumor regions and matched initial and recurrent tumors. We performed parallel DNA methylation profiling analyses of 95 specimens. Genomes and epigenomes of nontumor tissues that contained areas of cirrhosis or fibrosis were analyzed. We developed liver cancer cell lines that endogenously expressed a mutant form of TP53 (R249S) or overexpressed mutant forms of STAT3 (D170Y, K348E, and Y640F) or JAK1 (S703I and L910P) and tested the abilities of pharmacologic agents to reduce activity. Cells were analyzed by immunoblotting and chromatin immunoprecipitation with quantitative polymerase chain reaction. RESULTS: We determined the monoclonal origins of individual tumors using a single-sample collection approach that captured more than 90% of mutations that are detected in all regions of tumors. Phylogenetic and phyloepigenetic analyses showed interactions and codependence between the genomic and epigenomic features of HCCs. Methylation analysis showed a field effect in cirrhotic liver tissues that predisposes them to tumor development. Comparisons of genetic features showed that 52% of recurrent HCCs derive from the clonal lineage of the initial tumor. The clonal origin of recurrent HCCs allowed construction of a temporal map of genetic alterations that were associated with tumor recurrence. Activation of JAK signaling to STAT was a characteristic of HCC progression via mutations that are associated with response to drug sensitivity. The combination of a mutation that increases the function of TP53 and the 17p chromosome deletion might provide liver cancer cells with a replicative advantage. Chromatin immunoprecipitation analysis of TP53 with the R249S substitution showed its interaction with genes that encode chromatin regulators (MLL1 and MLL2). We validated MLL1 and MLL2 as direct targets of TP53R249S and affirmed their association in the cancer genome atlas data set. The MLL-complex antagonists MI-2-2 (inhibitor of protein interaction) and OICR-9492 (inhibitor of activity) specifically inhibited proliferation of HCC cells that express TP53R249S at nanomolar concentrations. CONCLUSIONS: We performed a systematic evaluation of intra- and intertumor genetic heterogeneity in HCC samples and identified genetic and epigenetic changes that are associated with tumor progression and recurrence. We identified chromatin regulators that are up-regulated by mutant TP53 in HCC cells and inhibitors that reduce proliferation of these cells. DNA methylation patterns in cirrhotic or fibrotic liver tissues might be used to identify those at risk of HCC development.

2.
Gastroenterology ; 157(6): 1630-1645.e6, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31560893

RESUMEN

BACKGROUND & AIMS: Intratumor heterogeneity and divergent clonal lineages within and among primary and recurrent hepatocellular carcinomas (HCCs) produce challenges to patient management. We investigated genetic and epigenetic variations within liver tumors, among hepatic lesions, and between primary and relapsing tumors. METHODS: Tumor and matched nontumor liver specimens were collected from 113 patients who underwent partial hepatectomy for primary or recurrent HCC at 2 hospitals in Hong Kong. We performed whole-genome, whole-exome, or targeted capture sequencing analyses of 356 HCC specimens collected from multiple tumor regions and matched initial and recurrent tumors. We performed parallel DNA methylation profiling analyses of 95 specimens. Genomes and epigenomes of nontumor tissues that contained areas of cirrhosis or fibrosis were analyzed. We developed liver cancer cell lines that endogenously expressed a mutant form of TP53 (R249S) or overexpressed mutant forms of STAT3 (D170Y, K348E, and Y640F) or JAK1 (S703I and L910P) and tested the abilities of pharmacologic agents to reduce activity. Cells were analyzed by immunoblotting and chromatin immunoprecipitation with quantitative polymerase chain reaction. RESULTS: We determined the monoclonal origins of individual tumors using a single sample collection approach that captured more than 90% of mutations that are detected in all regions of tumors. Phylogenetic and phylo-epigenetic analyses revealed interactions and codependence between the genomic and epigenomic features of HCCs. Methylation analysis revealed a field effect in cirrhotic liver tissues that predisposes them to tumor development. Comparisons of genetic features revealed that 52% of recurrent HCCs derive from the clonal lineage of the initial tumor. The clonal origin if recurrent HCCs allowed construction of a temporal map of genetic alterations that associated with tumor recurrence. Activation of JAK signaling to STAT was a characteristic of HCC progression via mutations that associate with response to drug sensitivity. The combination of a mutation that increases the function of TP53 and the 17p chromosome deletion might provide liver cancer cells with a replicative advantage. Chromatin immunoprecipitation analysis of TP53 with the R249S substitution revealed its interaction with genes that encode chromatin regulators (MLL1 and MLL2). We validated MLL1 and MLL2 as direct targets of TP53R249S and affirmed their association in the Cancer Genome Atlas dataset. The MLL-complex antagonists MI-2-2 (inhibitor of protein interaction) and OICR-9492 (inhibitor of activity) specifically inhibited proliferation of HCC cells that express TP53R249S at nanomolar concentrations. CONCLUSIONS: We performed a systematic evaluation of intra- and intertumor genetic heterogeneity in HCC samples and identified genetic and epigenetic changes that associate with tumor progression and recurrence. We identified chromatin regulators that are upregulated by mutant TP53 in HCC cells and inhibitors that reduce proliferation of these cells. DNA methylation patterns in cirrhotic or fibrotic liver tissues might be used to identify those at risk of HCC development.


Asunto(s)
Carcinoma Hepatocelular/genética , Cirrosis Hepática/genética , Neoplasias Hepáticas/genética , Recurrencia Local de Neoplasia/genética , Adulto , Anciano , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Metilación de ADN , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Femenino , Estudios de Seguimiento , Mutación con Ganancia de Función , Heterogeneidad Genética , Hepatectomía , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/metabolismo , Hong Kong , Humanos , Hígado/patología , Hígado/cirugía , Cirrosis Hepática/patología , Cirrosis Hepática/cirugía , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Masculino , Persona de Mediana Edad , Proteína de la Leucemia Mieloide-Linfoide/antagonistas & inhibidores , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/terapia , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/genética , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA