Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Skin Res Technol ; 27(6): 1135-1144, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34532902

RESUMEN

BACKGROUND: Organic acids on the surface of human hands contribute to the barrier against transient pathogens. This is the first study to explore the synergistic contribution of lactic acid and other hand environment-related features on the antibacterial properties of the hand surface. MATERIALS AND METHODS: We estimated the contribution of fingerprint depth, skin pH, stratum corneum water content, skin temperature, and sweat rate of the hands to the infection barrier using an observational survey of 105 subjects. The relationship between each factor and the antibacterial activity of the hands was analyzed using Pearson's correlation coefficient. We performed molecular dynamics simulations to study the interaction between lactic acid and bacterial membranes. RESULTS: The amount of lactic acid on the hands and skin temperature contributed positively to the antimicrobial activity (r = 0.437 and P = 3.18 × 10-6 , r = 0.500 and P = 5.66 × 10-8 , respectively), while the skin pH contributed negatively (r = -0.471, P = 3.99 × 10-7 ). The predicted value of the combined antimicrobial effect of these parameters was [antimicrobial activity] = 0.21 × [lactic acid] - 0.25 × [skin pH] + 0.26 × [skin temperature] + 0.98. The coefficient of determination (R2 ) was 0.50. CONCLUSION: The increase in the amount of non-ionic lactic acid due to lower pH and improvement in the fluidity of the cell membrane due to higher temperatures enable the efficient transport of lactic acid into cells and subsequent antimicrobial activity. The proposed mechanism could help to develop an effective hand infection barrier technology.


Asunto(s)
Mano , Ácido Láctico , Epidermis , Humanos , Agua
2.
Microb Cell Fact ; 12: 18, 2013 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-23419162

RESUMEN

BACKGROUND: The Bacillus subtilis genome-reduced strain MGB874 exhibits enhanced production of exogenous extracellular enzymes under batch fermentation conditions. We predicted that deletion of the gene for RocG, a bi-functional protein that acts as a glutamate dehydrogenase and an indirect repressor of glutamate synthesis, would improve glutamate metabolism, leading to further increased enzyme production. However, deletion of rocG dramatically decreased production of the alkaline cellulase Egl-237 in strain MGB874 (strain 874∆rocG). RESULTS: Transcriptome analysis and cultivation profiles suggest that this phenomenon is attributable to impaired secretion of alkaline cellulase Egl-237 and nitrogen starvation, caused by decreased external pH and ammonium depletion, respectively. With NH3-pH auxostat fermentation, production of alkaline cellulase Egl-237 in strain 874∆rocG was increased, exceeding that in the wild-type-background strain 168∆rocG. Notably, in strain 874∆rocG, high enzyme productivity was observed throughout cultivation, possibly due to enhancement of metabolic flux from 2-oxoglutarate to glutamate and generation of metabolic energy through activation of the tricarboxylic acid (TCA) cycle. The level of alkaline cellulase Egl-237 obtained corresponded to about 5.5 g l-1, the highest level reported so far. CONCLUSIONS: We found the highest levels of production of alkaline cellulase Egl-237 with the reduced-genome strain 874∆rocG and using the NH3-pH auxostat. Deletion of the glutamate dehydrogenase gene rocG enhanced enzyme production via a prolonged auxostat fermentation, possibly due to improved glutamate synthesis and enhanced generation of metabolism energy.


Asunto(s)
Bacillus subtilis/metabolismo , Celulasas/metabolismo , Ácido Glutámico/metabolismo , Amoníaco/metabolismo , Bacillus subtilis/crecimiento & desarrollo , Celulasas/genética , Ciclo del Ácido Cítrico , Regulación hacia Abajo , Perfilación de la Expresión Génica , Glutamato Deshidrogenasa/genética , Glutamato Deshidrogenasa/metabolismo , Concentración de Iones de Hidrógeno , Ácidos Cetoglutáricos/metabolismo , Eliminación de Secuencia
3.
Microb Cell Fact ; 11: 74, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22681752

RESUMEN

BACKGROUND: Bacillus subtilis genome-reduced strain MGB874 exhibits enhanced production of exogenous extracellular alkaline cellulase Egl-237 and subtilisin-like alkaline protease M-protease. Here, we investigated the suitability of strain MGB874 for the production of α-amylase, which was anticipated to provoke secretion stress responses involving the CssRS (Control secretion stress Regulator and Sensor) system. RESULTS: Compared to wild-type strain 168, the production of a novel alkaline α-amylase, AmyK38, was severely decreased in strain MGB874 and higher secretion stress responses were also induced. Genetic analyses revealed that these phenomena were attributable to the decreased pH of growth medium as a result of the lowered expression of rocG, encoding glutamate dehydrogenase, whose activity leads to NH3 production. Notably, in both the genome-reduced and wild-type strains, an up-shift of the external pH by the addition of an alkaline solution improved AmyK38 production, which was associated with alleviation of the secretion stress response. These results suggest that the optimal external pH for the secretion of AmyK38 is higher than the typical external pH of growth medium used to culture B. subtilis. Under controlled pH conditions, the highest production level (1.08 g l(-1)) of AmyK38 was obtained using strain MGB874. CONCLUSIONS: We demonstrated for the first time that RocG is an important factor for secretory enzyme production in B. subtilis through its role in preventing acidification of the growth medium. As expected, a higher external pH enabled a more efficient secretion of the alkaline α-amylase AmyK38 in B. subtilis. Under controlled pH conditions, the reduced-genome strain MGB874 was demonstrated to be a beneficial host for the production of AmyK38.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos , Espacio Extracelular/metabolismo , alfa-Amilasas/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Espacio Extracelular/química , Espacio Extracelular/genética , Regulación Bacteriana de la Expresión Génica , Concentración de Iones de Hidrógeno , alfa-Amilasas/genética
4.
Appl Environ Microbiol ; 77(23): 8370-81, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21965396

RESUMEN

Genome reduction strategies to create genetically improved cellular biosynthesis machineries for proteins and other products have been pursued by use of a wide range of bacteria. We reported previously that the novel Bacillus subtilis strain MGB874, which was derived from strain 168 and has a total genomic deletion of 874 kb (20.7%), exhibits enhanced production of recombinant enzymes. However, it was not clear how the genomic reduction resulted in elevated enzyme production. Here we report that deletion of the rocDEF-rocR region, which is involved in arginine degradation, contributes to enhanced enzyme production in strain MGB874. Deletion of the rocDEF-rocR region caused drastic changes in glutamate metabolism, leading to improved cell yields with maintenance of enzyme productivity. Notably, the specific enzyme productivity was higher in the reduced-genome strain, with or without the rocDEF-rocR region, than in wild-type strain 168. The high specific productivity in strain MGB874 is likely attributable to the higher expression levels of the target gene resulting from an increased promoter activity and plasmid copy number. Thus, the combined effects of the improved cell yield by deletion of the rocDEF-rocR region and the increased specific productivity by deletion of another gene(s) or the genomic reduction itself enhanced the production of recombinant enzymes in MGB874. Our findings represent a good starting point for the further improvement of B. subtilis reduced-genome strains as cell factories for the production of heterologous enzymes.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Enzimas/biosíntesis , Enzimas/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Dosificación de Gen , Genoma Bacteriano , Ácido Glutámico/metabolismo , Plásmidos , Regiones Promotoras Genéticas , Eliminación de Secuencia
5.
Sci Rep ; 11(1): 18608, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34545150

RESUMEN

Although the surface of the human hands contains high antimicrobial activity, studies investigating the precise components involved and the relationship between natural antimicrobial activity and morbidity in infectious diseases are limited. In this study, we developed a method to quantitatively measure the antimicrobial activity of hand surface components. Using a clinical survey, we validated the feasibility of our method and identified antimicrobial factors on the surface of the human hand. In a retrospective observational study, we compared the medical histories of the participants to assess infectious diseases. We found that the antimicrobial activity on the surface of the hands was significantly lower in the high morbidity group (N = 55) than in the low morbidity group (N = 54), indicating a positive association with the history of infection in individuals. A comprehensive analysis of the hand surface components indicated that organic acids, especially lactic acid and antimicrobial peptides, are highly correlated with antimicrobial activity. Moreover, the application of lactic acid using the amount present on the surface of the hand significantly improved the antimicrobial activity. These findings suggest that hand hygiene must be improved to enhance natural antimicrobial activity on the surface of the hands.


Asunto(s)
Control de Enfermedades Transmisibles/métodos , Desinfección de las Manos/métodos , Mano/microbiología , Ácido Láctico/metabolismo , Piel/metabolismo , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Piel/microbiología
6.
Mol Microbiol ; 70(3): 623-33, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18786148

RESUMEN

All archaeal genomes encode RNA polymerase (RNAP) subunits E and F that share a common ancestry with the eukaryotic RNAP subunits A43 and A14 (Pol I), Rpb7 and Rpb4 (Pol II), and C25 and C17 (Pol III). By gene replacement, we have isolated archaeal mutants of Thermococcus kodakarensis with the subunit F-encoding gene (rpoF) deleted, but we were unable to isolate mutants lacking the subunit E-encoding gene (rpoE). Wild-type T. kodakarensis grows at temperatures ranging from 60 degrees C to 100 degrees C, optimally at 85 degrees C, and the DeltarpoF cells grew at the same rate as wild type at 70 degrees C, but much slower and to lower cell densities at 85 degrees C. The abundance of a chaperonin subunit, CpkB, was much reduced in the DeltarpoF strain growing at 85 degrees C and increased expression of cpkB, rpoF or rpoE integrated at a remote site in the genome, using a nutritionally regulated promoter, improved the growth of DeltarpoF cells. RNAP preparations purified from DeltarpoF cells lacked subunit F and also subunit E and a transcription factor TFE that co-purifies with RNAP from wild-type cells, but in vitro, this mutant RNAP exhibited no discernible differences from wild-type RNAP in promoter-dependent transcription, abortive transcript synthesis, transcript elongation or termination.


Asunto(s)
Proteínas Arqueales/genética , ARN Polimerasas Dirigidas por ADN/genética , Factor sigma/genética , Thermococcus/genética , Transcripción Genética , Proteínas Arqueales/metabolismo , ADN de Archaea/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Eliminación de Gen , Calor , Mutación , Fenotipo , Plásmidos , Factor sigma/metabolismo , Thermococcus/enzimología , Thermococcus/metabolismo
7.
Sci Rep ; 6: 24877, 2016 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-27172459

RESUMEN

Dandruff is an unpleasant scalp disorder common to human populations. In this study, we systematically investigated the intra- and inter-associations among dandruff, physiological conditions such as sebum of the scalp, host demographics such as gender, age and the region of the scalp, and the microorganisms on the scalp. We found that the physiological conditions were highly relevant to the host age and varied in different regions of the same scalp. The sebum quantity and water content were negatively correlated with the formation of dandruff and had significant relationships with the two dominant but reciprocally inhibited bacteria on the scalp (Propionibacterium and Staphylococcus). The dominant fungus (Malassezia species) displayed contrary roles in its contribution to the healthy scalp micro-environment. Bacteria and fungi didn't show a close association with each other, but the intramembers were tightly linked. Bacteria had a stronger relationship with the severity of dandruff than fungi. Our results indicated that the severity of dandruff was closely associated with the interactions between the host and microorganisms. This study suggests that adjusting the balance of the bacteria on the scalp, particularly by enhancing Propionibacterium and suppressing Staphylococcus, might be a potential solution to lessen dandruff.


Asunto(s)
Bacterias/crecimiento & desarrollo , Caspa/etiología , Hongos/crecimiento & desarrollo , Microbiota , Cuero Cabelludo/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
8.
J Steroid Biochem Mol Biol ; 89-90(1-5): 31-4, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15225742

RESUMEN

The Vitamin D(3) lactone analogues, (23S)- and (23R)-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9647 and TEI-9648) are antagonists of the 1alpha,25-dihydroxyvitamin D(3) (1alpha,25-(OH)(2)D(3)) nuclear receptor (VDR)-mediated differentiation of human leukemia (HL-60) cells. In order to clarify the structure-Vitamin D antagonistic activity relationship, we paid attention to the unique lactone moiety of TEI-9647 and TEI-9648: alpha-exo-methylene-gamma-lactone structure. We synthesized the exo-methylene-modified analogues (methylene saturated, endo-methylene, methylene-deleted, methyl-substituted, dimethyl-substituted, methylene-replaced with dimethyl and cyclopropane) and oxygen-modified analogues (oxygen atom replaced with nitrogen and carbon atom) by convergent method using palladium-catalyzed coupling reaction or direct modification of VD(3) skeleton. The antagonistic activity in HL-60 cell differentiation evaluating system of these analogues revealed that any exo-methylene-modified analogues and nitrogen analogue did not have the antagonistic activity, on the other hand carbon analogue did show. The results suggest that "alpha-exo-methylene carbonyl" structure of VD(3) side-chain is crucial for antagonistic activity. The structure is integral building block of many natural products which have interesting biological and it is thought that Michael-type addition of alpha-exo-methylene carbonyl structure with protein nucleophiles such as cysteine would play an important role for the activities. According to this theory, Michael-type reaction of TEI-9647 and TEI-9648 with cysteine residue in protein related to VDR/VDRE-mediated genomic actions such as VDR would be essential step of the antagonistic action.


Asunto(s)
Calcitriol/análogos & derivados , Calcitriol/síntesis química , Calcitriol/farmacología , Colecalciferol/antagonistas & inhibidores , Calcitriol/química , Relación Estructura-Actividad
9.
Steroids ; 77(14): 1535-42, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23046766

RESUMEN

While searching for vitamin D(3) analogues which inhibit neutrophil recruitment in the lung without elevating plasma calcium level, we found that (5Z,7E)-(1S,3R)-20(R)-[(5E)-(2S)-2-hydroxy-2-methyl-cyclopentanone-5-ylidene]methyl-9,10-secopregna-5,7,10(19)-triene-1,3-diol (TEI-A00114) had the best efficacy and calcemic action. TEI-A00114 has a vitamin D receptor affinity 2.5-fold weaker and a vitamin D binding protein affinity 330.9-fold weaker than those of 1α,25(OH)(2)D(3). The estimated effective doses for 40% inhibition (ED(40)) via peroral and intratracheal administration are 7.6 and 0.4 µg/kg, respectively. TEI-A00114 was also tested by inhaled administration, and its ED(40) was calculated as 0.2 µg/kg. The estimated 40% inhibitory concentration (IC(40)) of TEI-A00114 on interleukin (IL)-8 production induced by lipopolysaccharide and on IL-1ß in human whole blood cells in vitro were 9.8 × 10(-8) or 1.8 × 10(-9)M, respectively. These levels of TEI-A00114's activities are equal to those of 1α,25(OH)(2)D(3). On the other hand, the calcemic action of TEI-A00114, which was evaluated at day 14 after sequential peroral quaque die administration, was 89-fold weaker (molar ratio) than that of 1α,25(OH)(2)D(3). These results indicate that TEI-A00114 has a dissociated profile between inhibition of neutrophil recruitment in the lung and calcemic action, suggesting its suitability over 1α,25(OH)(2)D(3) as a candidate for the treatment of acute lung injury.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Calcitriol/análogos & derivados , Calcio/sangre , Colecalciferol/análogos & derivados , Colecalciferol/uso terapéutico , Infiltración Neutrófila/efectos de los fármacos , Lesión Pulmonar Aguda/tratamiento farmacológico , Animales , Calcitriol/química , Calcitriol/uso terapéutico , Colecalciferol/química , Cricetinae , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Células HL-60 , Humanos , Masculino , Ratas , Ratas Sprague-Dawley
10.
ACS Appl Mater Interfaces ; 3(12): 4649-56, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22043965

RESUMEN

A simple copolymer consisting of N-isopropylacrylamide and coumarin-conjugated spiropyran (CS) units, poly(NIPAM-co-CS), has been synthesized. This polymer enables selective fluorometric detection of cyanide anion (CN(-)) in water at room temperature. The polymer itself shows almost no fluorescence, but shows a strong blue fluorescence in the presence of CN(-) under irradiation of UV light. The fluorescence enhancement occurs via a nucleophilic interaction between CN(-) and the photoformed merocyanine form of the CS unit, leading to a localization of π-electrons on the coumarin moiety. The polymer enables accurate determination of very low levels of CN(-) (>0.5 µM). The polymer can be recovered from water by simple centrifugation at high temperature (>40 °C), due to the heat-induced aggregation of the polymer. In addition, the polymer is regenerated by simple acid treatment, and the resulting polymer is successfully reused for further CN(-) sensing without loss of sensitivity.


Asunto(s)
Benzopiranos/química , Cumarinas/química , Cianuros/análisis , Indoles/química , Nitrocompuestos/química , Polímeros/química , Contaminantes Químicos del Agua/análisis , Aniones/análisis , Técnicas Biosensibles , Fluorescencia , Polímeros/síntesis química
11.
DNA Res ; 15(2): 73-81, 2008 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-18334513

RESUMEN

The emerging field of synthetic genomics is expected to facilitate the generation of microorganisms with the potential to achieve a sustainable society. One approach towards this goal is the reduction of microbial genomes by rationally designed deletions to create simplified cells with predictable behavior that act as a platform to build in various genetic systems for specific purposes. We report a novel Bacillus subtilis strain, MBG874, depleted of 874 kb (20%) of the genomic sequence. When compared with wild-type cells, the regulatory network of gene expression of the mutant strain is reorganized after entry into the transition state due to the synergistic effect of multiple deletions, and productivity of extracellular cellulase and protease from transformed plasmids harboring the corresponding genes is remarkably enhanced. To our knowledge, this is the first report demonstrating that genome reduction actually contributes to the creation of bacterial cells with a practical application in industry. Further systematic analysis of changes in the transcriptional regulatory network of MGB874 cells in relation to protein productivity should facilitate the generation of improved B. subtilis cells as hosts of industrial protein production.


Asunto(s)
Bacillus subtilis/genética , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Microbiología Industrial/métodos , Proteínas Recombinantes/metabolismo , Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Celulasas/genética , Celulasas/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Genómica/métodos , Proteínas Recombinantes/genética , Esporas Bacterianas
12.
J Bacteriol ; 189(7): 2683-91, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17259314

RESUMEN

We have developed a gene disruption system in the hyperthermophilic archaeon Thermococcus kodakaraensis using the antibiotic simvastatin and a fusion gene designed to overexpress the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase gene (hmg(Tk)) with the glutamate dehydrogenase promoter. With this system, we disrupted the T. kodakaraensis amylopullulanase gene (apu(Tk)) or a gene cluster which includes apu(Tk) and genes encoding components of a putative sugar transporter. Disruption plasmids were introduced into wild-type T. kodakaraensis KOD1 cells, and transformants exhibiting resistance to 4 microM simvastatin were isolated. The transformants exhibited growth in the presence of 20 microM simvastatin, and we observed a 30-fold increase in intracellular HMG-CoA reductase activity. The expected gene disruption via double-crossover recombination occurred at the target locus, but we also observed recombination events at the hmg(Tk) locus when the endogenous hmg(Tk) gene was used. This could be avoided by using the corresponding gene from Pyrococcus furiosus (hmg(Pf)) or by linearizing the plasmid prior to transformation. While both gene disruption strains displayed normal growth on amino acids or pyruvate, cells without the sugar transporter genes could not grow on maltooligosaccharides or polysaccharides, indicating that the gene cluster encodes the only sugar transporter involved in the uptake of these compounds. The Deltaapu(Tk) strain could not grow on pullulan and displayed only low levels of growth on amylose, suggesting that Apu(Tk) is a major polysaccharide-degrading enzyme in T. kodakaraensis.


Asunto(s)
Familia de Multigenes , Thermococcus/genética , Secuencia de Aminoácidos , Antibacterianos/farmacología , Proteínas Arqueales/genética , Resistencia a Medicamentos , Genes Arqueales , Calor , Hidroximetilglutaril-CoA Reductasas/genética , Cinética , Datos de Secuencia Molecular , Fenotipo , Plásmidos , Simvastatina/farmacología , Thermococcus/efectos de los fármacos , Thermococcus/enzimología , Thermococcus/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA