Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 175(6): 1533-1545.e20, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30415838

RESUMEN

Budding yeasts (subphylum Saccharomycotina) are found in every biome and are as genetically diverse as plants or animals. To understand budding yeast evolution, we analyzed the genomes of 332 yeast species, including 220 newly sequenced ones, which represent nearly one-third of all known budding yeast diversity. Here, we establish a robust genus-level phylogeny comprising 12 major clades, infer the timescale of diversification from the Devonian period to the present, quantify horizontal gene transfer (HGT), and reconstruct the evolution of 45 metabolic traits and the metabolic toolkit of the budding yeast common ancestor (BYCA). We infer that BYCA was metabolically complex and chronicle the tempo and mode of genomic and phenotypic evolution across the subphylum, which is characterized by very low HGT levels and widespread losses of traits and the genes that control them. More generally, our results argue that reductive evolution is a major mode of evolutionary diversification.


Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal , Genoma Fúngico , Filogenia , Saccharomycetales/clasificación , Saccharomycetales/genética
2.
Genome Res ; 26(8): 1081-90, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27440871

RESUMEN

Polyploidization events such as whole-genome duplication and inter-species hybridization are major evolutionary forces that shape genomes. Although long-term effects of polyploidization have been well-characterized, early molecular evolutionary consequences of polyploidization remain largely unexplored. Here, we report the discovery of two recent and independent genome hybridizations within a single clade of a fungal genus, Trichosporon Comparative genomic analyses revealed that redundant genes are experiencing decelerations, not accelerations, of evolutionary rates. We identified a relationship between gene conversion and decelerated evolution suggesting that gene conversion may improve the genome stability of young hybrids by restricting gene functional divergences. Furthermore, we detected large-scale gene losses from transcriptional and translational machineries that indicate a global compensatory mechanism against increased gene dosages. Overall, our findings illustrate counteracting mechanisms during an early phase of post-genome hybridization and fill a critical gap in existing theories on genome evolution.


Asunto(s)
Desaceleración , Evolución Molecular , Genoma Fúngico/genética , Trichosporon/genética , Conversión Génica , Hibridación Genética , Filogenia , Poliploidía
3.
Fungal Genet Biol ; 130: 31-42, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31026590

RESUMEN

Delineation and characterization of genera in Trichosporonales (Agaricomycotina, Basidiomycota) was performed using 24 haploid and 3 naturally occurring hybrid genomes, with 3 Tremellales genomes used as outgroups. Orthologous group analysis of those genomes showed presence-absence patterns of orthologs that were consistent with the genus classifications. Many shared unique orthologs were identified in the well-supported lineages (genera Apiotrichum and Trichosporon), supporting the definitions of the genera Apiotrichum and Trichosporon from a genomic perspective. Specifically, we obtained 24 and 285 genus-specific genes from eight Apiotrichum and five Trichosporon species, respectively, and propose that these genus-specific genes can be used for delineation of those genera. On the other hand, the genus Cutaneotrichosporon shared only one genus-specific gene among eight genomes, indicating that this genus definition might require re-examination based on genomic data. In addition, taxonomic revisions are presented in this study, including the proposal of two genera, Pascua and Prillingera. Because genomic data can be systematically obtained and analyzed to compare species from a comprehensive viewpoint, they can be used not only to reconstruct reliable phylogenetic trees, but also to re-examine the definitions of taxonomic classifications. To our knowledge, this is the first report to discuss the 'natural system' of genus level classification in fungi based on genomic data.


Asunto(s)
Basidiomycota/clasificación , Basidiomycota/genética , Genoma Fúngico , Genómica , Filogenia , Basidiomycota/aislamiento & purificación , Proteínas Fúngicas/genética , Genes Fúngicos , Haploidia , Fenotipo , Análisis de Secuencia , Trichosporon/clasificación , Trichosporon/genética , Ubiquinona
4.
Yeast ; 35(1): 99-111, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29027707

RESUMEN

To construct a backbone tree consisting of basidiomycetous yeasts, draft genome sequences from 25 species of Trichosporonales (Tremellomycetes, Basidiomycota) were generated. In addition to the hybrid genomes of Trichosporon coremiiforme and Trichosporon ovoides that we described previously, we identified an interspecies hybrid genome in Cutaneotrichosporon mucoides (formerly Trichosporon mucoides). This hybrid genome had a gene retention rate of ~55%, and its closest haploid relative was Cutaneotrichosporon dermatis. After constructing the C. mucoides subgenomes, we generated a phylogenetic tree using genome data from the 27 haploid species and the subgenome data from the three hybrid genome species. It was a high-quality tree with 100% bootstrap support for all of the branches. The genome-based tree provided superior resolution compared with previous multi-gene analyses. Although our backbone tree does not include all Trichosporonales genera (e.g. Cryptotrichosporon), it will be valuable for future analyses of genome data. Interest in interspecies hybrid fungal genomes has recently increased because they may provide a basis for new technologies. The three Trichosporonales hybrid genomes described in this study are different from well-characterized hybrid genomes (e.g. those of Saccharomyces pastorianus and Saccharomyces bayanus) because these hybridization events probably occurred in the distant evolutionary past. Hence, they will be useful for studying genome stability following hybridization and speciation events. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Basidiomycota/genética , Evolución Biológica , Genoma Fúngico , Haploidia , Hibridación Genética , Levaduras/genética
5.
Geroscience ; 46(2): 2063-2081, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37817005

RESUMEN

While some old adults stay healthy and non-frail up to late in life, others experience multimorbidity and frailty often accompanied by a pro-inflammatory state. The underlying molecular mechanisms for those differences are still obscure. Here, we used gene expression analysis to understand the molecular underpinning between non-frail and frail individuals in old age. Twenty-four adults (50% non-frail and 50% frail) from InCHIANTI study were included. Total RNA extracted from whole blood was analyzed by Cap Analysis of Gene Expression (CAGE). CAGE identified transcription start site (TSS) and active enhancer regions. We identified a set of differentially expressed (DE) TSS and enhancer between non-frail and frail and male and female participants. Several DE TSSs were annotated as lncRNA (XIST and TTTY14) and antisense RNAs (ZFX-AS1 and OVCH1 Antisense RNA 1). The promoter region chr6:366,786,54-366,787,97;+ was DE and overlapping the longevity CDKN1A gene. GWAS-LD enrichment analysis identifies overlapping LD-blocks with the DE regions with reported traits in GWAS catalog (isovolumetric relaxation time and urinary tract infection frequency). Furthermore, we used weighted gene co-expression network analysis (WGCNA) to identify changes of gene expression associated with clinical traits and identify key gene modules. We performed functional enrichment analysis of the gene modules with significant trait/module correlation. One gene module is showing a very distinct pattern in hub genes. Glycogen Phosphorylase L (PYGL) was the top ranked hub gene between non-frail and frail. We predicted transcription factor binding sites (TFBS) and motif activity. TF involved in age-related pathways (e.g., FOXO3 and MYC) shows different expression patterns between non-frail and frail participants. Expanding the study of OVCH1 Antisense RNA 1 and PYGL may help understand the mechanisms leading to loss of homeostasis that ultimately causes frailty.


Asunto(s)
Fragilidad , ARN Largo no Codificante , Humanos , Masculino , Femenino , Anciano , Anciano Frágil , Fragilidad/genética , Perfilación de la Expresión Génica , ARN Largo no Codificante/genética , ARN sin Sentido/genética
6.
Lab Anim (NY) ; 53(9): 244-251, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39215182

RESUMEN

Nonhuman primates (NHPs), which are closely related to humans, are useful in biomedical research, and an increasing number of NHP disease models have been reported using gene editing. However, many disease-related genes cause perinatal death when manipulated homozygously by gene editing. In addition, NHP resources, which are limited, should be efficiently used. Here, to address these issues, we developed a method of introducing heterozygous genetic modifications into common marmosets by combining Platinum transcription activator-like effector nuclease (TALEN) and a gene-editing strategy in oocytes. We succeeded in introducing the heterozygous exon 9 deletion mutation in the presenilin 1 gene, which causes familial Alzheimer's disease in humans, using this technology. As a result, we obtained animals with the expected genotypes and confirmed several Alzheimer's disease-related biochemical changes. This study suggests that highly efficient heterozygosity-oriented gene editing is possible using TALEN and oocytes and is an effective method for producing genetically modified animals.


Asunto(s)
Callithrix , Exones , Edición Génica , Heterocigoto , Presenilina-1 , Nucleasas de los Efectores Tipo Activadores de la Transcripción , Animales , Callithrix/genética , Edición Génica/métodos , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Presenilina-1/genética , Femenino , Modelos Animales de Enfermedad , Enfermedad de Alzheimer/genética , Animales Modificados Genéticamente/genética , Oocitos/metabolismo
7.
J Biol Chem ; 286(44): 38602-38613, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21880733

RESUMEN

Marfan syndrome (MFS) is a systemic disorder of the connective tissues caused by insufficient fibrillin-1 microfibril formation and can cause cardiac complications, emphysema, ocular lens dislocation, and severe periodontal disease. ADAMTSL6ß (A disintegrin-like metalloprotease domain with thrombospondin type I motifs-like 6ß) is a microfibril-associated extracellular matrix protein expressed in various connective tissues that has been implicated in fibrillin-1 microfibril assembly. We here report that ADAMTSL6ß plays an essential role in the development and regeneration of connective tissues. ADAMTSL6ß expression rescues microfibril disorder after periodontal ligament injury in an MFS mouse model through the promotion of fibrillin-1 microfibril assembly. In addition, improved fibrillin-1 assembly in MFS mice following the administration of ADAMTSL6ß attenuates the overactivation of TGF-ß signals associated with the increased release of active TGF-ß from disrupted fibrillin-1 microfibrils within periodontal ligaments. Our current data thus demonstrate the essential contribution of ADAMTSL6ß to fibrillin-1 microfibril formation. These findings also suggest a new therapeutic strategy for the treatment of MFS through ADAMTSL6ß-mediated fibrillin-1 microfibril assembly.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Síndrome de Marfan/metabolismo , Proteínas de Microfilamentos/química , Animales , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/fisiología , Fibrilina-1 , Fibrilinas , Regulación del Desarrollo de la Expresión Génica , Humanos , Inmunohistoquímica/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microfibrillas/patología , Modelos Genéticos , Proteínas Recombinantes/química , Diente/embriología , Factor de Crecimiento Transformador beta/metabolismo , Cicatrización de Heridas
8.
J Biol Chem ; 285(7): 4870-82, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-19940141

RESUMEN

ADAMTS (A disintegrin and metalloproteinase with thrombospondin motifs)-like (ADAMTSL) proteins, a subgroup of the ADAMTS superfamily, share several domains with ADAMTS proteinases, including thrombospondin type I repeats, a cysteine-rich domain, and an ADAMTS spacer, but lack a catalytic domain. We identified two new members of ADAMTSL proteins, ADAMTSL-6alpha and -6beta, that differ in their N-terminal amino acid sequences but have common C-terminal regions. When transfected into MG63 osteosarcoma cells, both isoforms were secreted and deposited into pericellular matrices, although ADAMTSL-6alpha, in contrast to -6beta, was barely detectable in the conditioned medium. Immunolabeling at the light and electron microscopic levels showed their close association with fibrillin-1-rich microfibrils in elastic connective tissues. Surface plasmon resonance analyses demonstrated that ADAMTSL-6beta binds to the N-terminal half of fibrillin-1 with a dissociation constant of approximately 80 nm. When MG63 cells were transfected or exogenously supplemented with ADAMTSL-6, fibrillin-1 matrix assembly was promoted in the early but not the late stage of the assembly process. Furthermore, ADAMTSL-6 transgenic mice exhibited excessive fibrillin-1 fibril formation in tissues where ADAMTSL-6 was overexpressed. All together, these results indicated that ADAMTSL-6 is a novel microfibril-associated protein that binds directly to fibrillin-1 and promotes fibrillin-1 matrix assembly.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Proteínas de Microfilamentos/metabolismo , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Southern Blotting , Cartílago/metabolismo , Cartílago/ultraestructura , Línea Celular , Embrión de Mamíferos/metabolismo , Proteínas de la Matriz Extracelular/química , Proteínas de la Matriz Extracelular/genética , Fibrilina-1 , Fibrilinas , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicoproteínas/fisiología , Immunoblotting , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Transgénicos , Proteínas de Microfilamentos/ultraestructura , Microscopía Electrónica , Datos de Secuencia Molecular , Unión Proteica/genética , Unión Proteica/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Resonancia por Plasmón de Superficie
9.
Biochem Biophys Res Commun ; 409(2): 293-8, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21575607

RESUMEN

MicroRNAs (miRNAs) have been demonstrated to be potent post-trascriptional modulators of protein expression. miRNA expression was profiled in the left and right dorsal hippocampal CA3 of mature rats by high-throughput deep sequencing. Among the sequenced and cross-mapped small RNAs, 88% belonged to the miRNAs annotated in the miRBase 15 database. Nearly half of the small RNAs belonged to the let-7 family miRNA. Seven percent of the sequenced small RNAs were not annotated in miRBase 15. Bioinformatic analysis of the unannotated small RNA sequences suggested seventeen novel miRNA candidates with relatively high expression levels (>100 tags per million). The left:right expression ratios were similar for all highly expressed miRNAs with less than 10% differences. These results provide a basic idea of the relative expression strengths of known and unknown miRNAs in the dorsal hippocampal CA3.


Asunto(s)
Región CA3 Hipocampal/metabolismo , MicroARNs/genética , Animales , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratas , Ratas Long-Evans , Análisis de Secuencia de ARN
10.
Proc Natl Acad Sci U S A ; 105(35): 12849-54, 2008 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-18757743

RESUMEN

Extracellular matrix (ECM), which provides critical scaffolds for all adhesive cells, regulates proliferation, differentiation, and apoptosis. Different cell types employ customized ECMs, which are thought to play important roles in the generation of so-called niches that contribute to cell-specific functions. The molecular entities of these customized ECMs, however, have not been elucidated. Here, we describe a strategy for transcriptome-wide identification of ECM proteins based on computational screening of >60,000 full-length mouse cDNAs for secreted proteins, followed by in vitro functional assays. These assays screened the candidate proteins for ECM-assembling activities, interactions with other ECM molecules, modifications with glycosaminoglycans, and cell-adhesive activities, and were then complemented with immunohistochemical analysis. We identified 16 ECM proteins, of which seven were localized in basement membrane (BM) zones. The identification of these previously unknown BM proteins allowed us to construct a body map of BM proteins, which represents the comprehensive immunohistochemistry-based expression profiles of the tissue-specific customization of BMs.


Asunto(s)
Proteínas de la Matriz Extracelular/análisis , Perfilación de la Expresión Génica , Animales , Membrana Basal/citología , Membrana Basal/metabolismo , Línea Celular , Biología Computacional , Epitelio/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos ICR , Transporte de Proteínas , Diente/citología , Diente/embriología
11.
J Clin Invest ; 131(22)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34779414

RESUMEN

Cerebral small vessel disease (CSVD) causes dementia and gait disturbance due to arteriopathy. Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is a hereditary form of CSVD caused by loss of high-temperature requirement A1 (HTRA1) serine protease activity. In CARASIL, arteriopathy causes intimal thickening, smooth muscle cell (SMC) degeneration, elastic lamina splitting, and vasodilation. The molecular mechanisms were proposed to involve the accumulation of matrisome proteins as substrates or abnormalities in transforming growth factor ß (TGF-ß) signaling. Here, we show that HTRA1-/- mice exhibited features of CARASIL-associated arteriopathy: intimal thickening, abnormal elastic lamina, and vasodilation. In addition, the mice exhibited reduced distensibility of the cerebral arteries and blood flow in the cerebral cortex. In the thickened intima, matrisome proteins, including the hub protein fibronectin (FN) and latent TGF-ß binding protein 4 (LTBP-4), which are substrates of HTRA1, accumulated. Candesartan treatment alleviated matrisome protein accumulation and normalized the vascular distensibility and cerebral blood flow. Furthermore, candesartan reduced the mRNA expression of Fn1, Ltbp-4, and Adamtsl2, which are involved in forming the extracellular matrix network. Our results indicate that these accumulated matrisome proteins may be potential therapeutic targets for arteriopathy in CARASIL.


Asunto(s)
Alopecia/tratamiento farmacológico , Bencimidazoles/uso terapéutico , Compuestos de Bifenilo/uso terapéutico , Infarto Cerebral/tratamiento farmacológico , Serina Peptidasa A1 que Requiere Temperaturas Altas/fisiología , Leucoencefalopatías/tratamiento farmacológico , Enfermedades de la Columna Vertebral/tratamiento farmacológico , Tetrazoles/uso terapéutico , Proteínas ADAMTS/análisis , Alopecia/complicaciones , Animales , Infarto Cerebral/complicaciones , Circulación Cerebrovascular/efectos de los fármacos , Progresión de la Enfermedad , Proteínas de la Matriz Extracelular/análisis , Proteínas de Unión a TGF-beta Latente/análisis , Leucoencefalopatías/complicaciones , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes/análisis , Enfermedades de la Columna Vertebral/complicaciones , Factor de Crecimiento Transformador beta/fisiología
12.
Nat Cancer ; 2(3): 340-356, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-35121960

RESUMEN

Aggressive therapy-resistant and refractory acute myeloid leukemia (AML) has an extremely poor outcome. By analyzing a large number of genetically complex and diverse, primary high-risk poor-outcome human AML samples, we identified specific pathways of therapeutic vulnerability. Through drug screens followed by extensive in vivo validation and genomic analyses, we found inhibition of cytosolic and mitochondrial anti-apoptotic proteins XIAP, BCL2 and MCL1, and a key regulator of mitosis, AURKB, as a vulnerability hub based on patient-specific genetic aberrations and transcriptional signatures. Combinatorial therapeutic inhibition of XIAP with an additional patient-specific vulnerability eliminated established AML in vivo in patient-derived xenografts (PDXs) bearing diverse genetic aberrations, with no signs of recurrence during off-treatment follow-up. By integrating genomic profiling and drug-sensitivity testing, this work provides a platform for a precision-medicine approach for treating aggressive AML with high unmet need.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Proto-Oncogénicas c-bcl-2 , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/uso terapéutico , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteína Inhibidora de la Apoptosis Ligada a X/genética
13.
Microbiol Resour Announc ; 9(48)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239459

RESUMEN

Here, we report draft genome sequence of oleaginous yeast strain Saitozyma sp. JCM 24511, which is phylogenetically closely related to Saitozyma podzolica These data will have implications not only for the study of the oleaginous activities of yeasts but also for the study of the plant-microorganism microbiome.

14.
Microbiol Resour Announc ; 8(26)2019 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-31248996

RESUMEN

We report the draft genome sequences of type strains for Dioszegia crocea and its closely related species Dioszegia aurantiaca, which should improve our understanding of the epiphytic phylloplane yeasts. These data will also have implications for the plant microbiome, since Dioszegia is considered a microbial "hub" taxon.

15.
Commun Biol ; 2: 263, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31341962

RESUMEN

Genome hybridization is an important evolutionary event that gives rise to species with novel capabilities. However, the merging of distinct genomes also brings together incompatible regulatory networks that must be resolved during the course of evolution. Understanding of the early stages of post-hybridization evolution is particularly important because changes in these stages have long-term evolutionary consequences. Here, via comparative transcriptomic analyses of two closely related, recently hybridized Trichosporon fungi, T. coremiiforme and T. ovoides, and three extant relatives, we show that early post-hybridization evolutionary processes occur separately at the gene sequence and gene expression levels but together contribute to the stabilization of hybrid genome and transcriptome. Our findings also highlight lineage-specific consequences of genome hybridization, revealing that the transcriptional regulatory dynamics in these hybrids responded completely differently to gene loss events: one involving both subgenomes and another that is strictly subgenome-specific.


Asunto(s)
Genoma Fúngico , Hibridación Genética , Transcriptoma , Trichosporon/genética , Regulación Fúngica de la Expresión Génica
16.
Curr Biol ; 29(18): 3041-3052.e4, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31522940

RESUMEN

Parasitic plants in the genus Striga, commonly known as witchweeds, cause major crop losses in sub-Saharan Africa and pose a threat to agriculture worldwide. An understanding of Striga parasite biology, which could lead to agricultural solutions, has been hampered by the lack of genome information. Here, we report the draft genome sequence of Striga asiatica with 34,577 predicted protein-coding genes, which reflects gene family contractions and expansions that are consistent with a three-phase model of parasitic plant genome evolution. Striga seeds germinate in response to host-derived strigolactones (SLs) and then develop a specialized penetration structure, the haustorium, to invade the host root. A family of SL receptors has undergone a striking expansion, suggesting a molecular basis for the evolution of broad host range among Striga spp. We found that genes involved in lateral root development in non-parasitic model species are coordinately induced during haustorium development in Striga, suggesting a pathway that was partly co-opted during the evolution of the haustorium. In addition, we found evidence for horizontal transfer of host genes as well as retrotransposons, indicating gene flow to S. asiatica from hosts. Our results provide valuable insights into the evolution of parasitism and a key resource for the future development of Striga control strategies.


Asunto(s)
Interacciones Huésped-Parásitos/genética , Striga/genética , Animales , Evolución Biológica , Evolución Molecular , Transferencia de Gen Horizontal/genética , Germinación , Orobanchaceae/genética , Parásitos/genética , Parásitos/metabolismo , Raíces de Plantas , Semillas , Simbiosis
17.
Sci Rep ; 8(1): 940, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29343788

RESUMEN

Autotrophic eukaryotes have evolved by the endosymbiotic uptake of photosynthetic organisms. Interestingly, many algae and plants have secondarily lost the photosynthetic activity despite its great advantages. Prototheca and Helicosporidium are non-photosynthetic green algae possessing colourless plastids. The plastid genomes of Prototheca wickerhamii and Helicosporidium sp. are highly reduced owing to the elimination of genes related to photosynthesis. To gain further insight into the reductive genome evolution during the shift from a photosynthetic to a heterotrophic lifestyle, we sequenced the plastid and nuclear genomes of two Prototheca species, P. cutis JCM 15793 and P. stagnora JCM 9641, and performed comparative genome analyses among trebouxiophytes. Our phylogenetic analyses using plastid- and nucleus-encoded proteins strongly suggest that independent losses of photosynthesis have occurred at least three times in the clade of Prototheca and Helicosporidium. Conserved gene content among these non-photosynthetic lineages suggests that the plastid and nuclear genomes have convergently eliminated a similar set of photosynthesis-related genes. Other than the photosynthetic genes, significant gene loss and gain were not observed in Prototheca compared to its closest photosynthetic relative Auxenochlorella. Although it remains unclear why loss of photosynthesis occurred in Prototheca, the mixotrophic capability of trebouxiophytes likely made it possible to eliminate photosynthesis.


Asunto(s)
Chlorophyta/genética , Genoma de Plastidios/genética , Fotosíntesis/genética , Prototheca/genética , Nucléolo Celular/genética , Evolución Molecular , Filogenia , Plastidios/genética
18.
Curr Biol ; 12(22): 1946-51, 2002 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-12445389

RESUMEN

Microtubules play critical roles in a variety of cell processes, including mitosis, organelle transport, adhesion and migration, and the maintenance of cell polarity. Microtubule-associated proteins (MAPs) regulate the dynamic organization and stability of microtubules, often through either cell-specific or cell division stage-specific interactions. To identify novel cytoskeletal-associated proteins and peptides that regulate microtubules and other cytoskeletal and adhesive structures, we have developed a GFP cDNA screening strategy based on identifying gene products that localize to these structures. Using this approach, we have identified a novel MAP, GLFND, that shows homology to the Opitz syndrome gene product [6], localizes to a subpopulation of microtubules that are acetylated, and protects microtubules from depolymerization with nocodazole. Expression of an N-terminal deletion binds microtubules but alters their organization. During the cell cycle, GLFND dissociates from microtubules at the beginning of mitosis and then reassociates at cytokinesis. Furthermore, ectopic expression of GLFND inhibits cell division and cytokinesis in CHO cells. These observations make GLFND unique among MAPs characterized thus far.


Asunto(s)
División Celular/fisiología , Proteínas Luminiscentes/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/ultraestructura , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Animales , Células CHO , Cricetinae , ADN Complementario/genética , Fibroblastos/citología , Fibroblastos/fisiología , Proteínas Fluorescentes Verdes , Humanos , Proteínas Luminiscentes/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/fisiología , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso , Proteínas Recombinantes de Fusión/metabolismo , Eliminación de Secuencia , Transfección , Tubulina (Proteína)/metabolismo
19.
Genome Announc ; 5(35)2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28860253

RESUMEN

Pilasporangium apinafurcum, formerly classified as Pythium apinafurcum, is a unique oomycete that infects plants asymptomatically. Here, we present the draft genome sequences of two variants of P. apinafurcum, JCM 30513 and JCM 30514, isolated from uncultivated field soil in Wakayama Prefecture, Japan.

20.
Sci Data ; 4: 170112, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28850106

RESUMEN

In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities.


Asunto(s)
Perfilación de la Expresión Génica , Genoma , Animales , Regulación de la Expresión Génica , Humanos , Ratones , Regiones Promotoras Genéticas , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA