Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
2.
Nature ; 564(7734): 64-70, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30464347

RESUMEN

Vertebrates have greatly elaborated the basic chordate body plan and evolved highly distinctive genomes that have been sculpted by two whole-genome duplications. Here we sequence the genome of the Mediterranean amphioxus (Branchiostoma lanceolatum) and characterize DNA methylation, chromatin accessibility, histone modifications and transcriptomes across multiple developmental stages and adult tissues to investigate the evolution of the regulation of the chordate genome. Comparisons with vertebrates identify an intermediate stage in the evolution of differentially methylated enhancers, and a high conservation of gene expression and its cis-regulatory logic between amphioxus and vertebrates that occurs maximally at an earlier mid-embryonic phylotypic period. We analyse regulatory evolution after whole-genome duplications, and find that-in vertebrates-over 80% of broadly expressed gene families with multiple paralogues derived from whole-genome duplications have members that restricted their ancestral expression, and underwent specialization rather than subfunctionalization. Counter-intuitively, paralogues that restricted their expression increased the complexity of their regulatory landscapes. These data pave the way for a better understanding of the regulatory principles that underlie key vertebrate innovations.


Asunto(s)
Regulación de la Expresión Génica , Genómica , Anfioxos/genética , Vertebrados/genética , Animales , Tipificación del Cuerpo/genética , Metilación de ADN , Humanos , Anfioxos/embriología , Anotación de Secuencia Molecular , Regiones Promotoras Genéticas , Transcriptoma/genética
3.
New Phytol ; 239(2): 766-777, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37212044

RESUMEN

There is growing evidence that cytonuclear incompatibilities (i.e. disruption of cytonuclear coadaptation) might contribute to the speciation process. In a former study, we described the possible involvement of plastid-nuclear incompatibilities in the reproductive isolation between four lineages of Silene nutans (Caryophyllaceae). Because organellar genomes are usually cotransmitted, we assessed whether the mitochondrial genome could also be involved in the speciation process, knowing that the gynodioecious breeding system of S. nutans is expected to impact the evolutionary dynamics of this genome. Using hybrid capture and high-throughput DNA sequencing, we analyzed diversity patterns in the genic content of the organellar genomes in the four S. nutans lineages. Contrary to the plastid genome, which exhibited a large number of fixed substitutions between lineages, extensive sharing of polymorphisms between lineages was found in the mitochondrial genome. In addition, numerous recombination-like events were detected in the mitochondrial genome, loosening the linkage disequilibrium between the organellar genomes and leading to decoupled evolution. These results suggest that gynodioecy shaped mitochondrial diversity through balancing selection, maintaining ancestral polymorphism and, thus, limiting the involvement of the mitochondrial genome in evolution of hybrid inviability between S. nutans lineages.


Asunto(s)
Genoma Mitocondrial , Silene , Silene/genética , Fitomejoramiento , Núcleo Celular/genética , Mitocondrias/genética , Genoma Mitocondrial/genética , Evolución Molecular , Filogenia
4.
Environ Microbiol ; 19(3): 1103-1119, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27902881

RESUMEN

Magnetotactic bacteria (MTB) are a group of phylogenetically and physiologically diverse Gram-negative bacteria that synthesize intracellular magnetic crystals named magnetosomes. MTB are affiliated with three classes of Proteobacteria phylum, Nitrospirae phylum, Omnitrophica phylum and probably with the candidate phylum Latescibacteria. The evolutionary origin and physiological diversity of MTB compared with other bacterial taxonomic groups remain to be illustrated. Here, we analysed the genome of the marine magneto-ovoid strain MO-1 and found that it is closely related to Magnetococcus marinus MC-1. Detailed analyses of the ribosomal proteins and whole proteomes of 390 genomes reveal that, among the Proteobacteria analysed, only MO-1 and MC-1 have coding sequences (CDSs) with a similarly high proportion of origins from Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria and Gammaproteobacteria. Interestingly, a comparative metabolic network analysis with anoxic network enzymes from sequenced MTB and non-MTB successfully allows the eventual prediction of an organism with a metabolic profile compatible for magnetosome production. Altogether, our genomic analysis reveals multiple origins of MO-1 and M. marinus MC-1 genomes and suggests a metabolism-restriction model for explaining whether a bacterium could become an MTB upon acquisition of magnetosome encoding genes.


Asunto(s)
Genoma Bacteriano , Magnetosomas , Proteobacteria/clasificación , Proteobacteria/genética , Secuencia de Bases , Deltaproteobacteria/genética , Evolución Molecular , Magnetosomas/genética , Filogenia , Proteobacteria/ultraestructura
5.
Extremophiles ; 20(3): 301-10, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27039108

RESUMEN

Bacteria of the genus Photobacterium thrive worldwide in oceans and show substantial eco-physiological diversity including free-living, symbiotic and piezophilic life styles. Genomic characteristics underlying this variability across species are poorly understood. Here we carried out genomic and physiological analysis of Photobacterium phosphoreum strain ANT-2200, the first deep-sea luminous bacterium of which the genome has been sequenced. Using optical mapping we updated the genomic data and reassembled it into two chromosomes and a large plasmid. Genomic analysis revealed a versatile energy metabolic potential and physiological analysis confirmed its growth capacity by deriving energy from fermentation of glucose or maltose, by respiration with formate as electron donor and trimethlyamine N-oxide (TMAO), nitrate or fumarate as electron acceptors, or by chemo-organo-heterotrophic growth in rich media. Despite that it was isolated at a site with saturated dissolved oxygen, the ANT-2200 strain possesses four gene clusters coding for typical anaerobic enzymes, the TMAO reductases. Elevated hydrostatic pressure enhances the TMAO reductase activity, mainly due to the increase of isoenzyme TorA1. The high copy number of the TMAO reductase isoenzymes and pressure-enhanced activity might imply a strategy developed by bacteria to adapt to deep-sea habitats where the instant TMAO availability may increase with depth.


Asunto(s)
Adaptación Fisiológica , Metabolismo Energético , Genoma Bacteriano , Photobacterium/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte de Electrón , Glucosa/metabolismo , Presión Hidrostática , Isoenzimas/genética , Isoenzimas/metabolismo , Maltosa/metabolismo , Metilaminas/metabolismo , Oxidorreductasas N-Desmetilantes/genética , Oxidorreductasas N-Desmetilantes/metabolismo , Photobacterium/metabolismo , Agua de Mar/microbiología
6.
Nature ; 464(7288): 543-8, 2010 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-20336137

RESUMEN

Only three biological pathways are known to produce oxygen: photosynthesis, chlorate respiration and the detoxification of reactive oxygen species. Here we present evidence for a fourth pathway, possibly of considerable geochemical and evolutionary importance. The pathway was discovered after metagenomic sequencing of an enrichment culture that couples anaerobic oxidation of methane with the reduction of nitrite to dinitrogen. The complete genome of the dominant bacterium, named 'Candidatus Methylomirabilis oxyfera', was assembled. This apparently anaerobic, denitrifying bacterium encoded, transcribed and expressed the well-established aerobic pathway for methane oxidation, whereas it lacked known genes for dinitrogen production. Subsequent isotopic labelling indicated that 'M. oxyfera' bypassed the denitrification intermediate nitrous oxide by the conversion of two nitric oxide molecules to dinitrogen and oxygen, which was used to oxidize methane. These results extend our understanding of hydrocarbon degradation under anoxic conditions and explain the biochemical mechanism of a poorly understood freshwater methane sink. Because nitrogen oxides were already present on early Earth, our finding opens up the possibility that oxygen was available to microbial metabolism before the evolution of oxygenic photosynthesis.


Asunto(s)
Anaerobiosis , Bacterias/metabolismo , Metano/metabolismo , Nitritos/metabolismo , Bacterias/clasificación , Bacterias/enzimología , Bacterias/genética , Genoma Bacteriano/genética , Datos de Secuencia Molecular , Oxidación-Reducción , Oxígeno/metabolismo , Oxigenasas/genética , Filogenia , Microbiología del Suelo
7.
Environ Microbiol ; 17(11): 4189-99, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25384557

RESUMEN

Oyster diseases caused by pathogenic vibrios pose a major challenge to the sustainability of oyster farming. In France, since 2012 a disease affecting specifically adult oysters has been associated with the presence of Vibrio aestuarianus. Here, by combining genome comparison, phylogenetic analyses and high-throughput infections of strains isolated before or during the recent outbreaks, we show that virulent strains cluster into two V. aestuarianus lineages independently of the sampling dates. The bacterial lethal dose was not different between strains isolated before or after 2012. Hence, the emergence of a new highly virulent clonal strain is unlikely. Each lineage comprises nearly identical strains, the majority of them being virulent, suggesting that within these phylogenetically coherent virulent lineages a few strains have lost their pathogenicity. Comparative genomics allowed the identification of a single frameshift in a non-virulent strain. This mutation affects the varS gene that codes for a signal transduction histidine-protein kinase. Genetic analyses confirmed that varS is necessary for infection of oysters and for a secreted metalloprotease expression. For the first time in a Vibrio species, we show here that VarS is a key factor of pathogenicity.


Asunto(s)
Genes Reguladores , Ostreidae/microbiología , Proteínas Quinasas/genética , Vibrio/genética , Vibrio/patogenicidad , Animales , Mutación del Sistema de Lectura/genética , Francia , Genes Reguladores/genética , Genómica , Filogenia , Virulencia/genética
8.
PLoS Genet ; 8(3): e1002495, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22457631

RESUMEN

Self-incompatibility has been considered by geneticists a model system for reproductive biology and balancing selection, but our understanding of the genetic basis and evolution of this molecular lock-and-key system has remained limited by the extreme level of sequence divergence among haplotypes, resulting in a lack of appropriate genomic sequences. In this study, we report and analyze the full sequence of eleven distinct haplotypes of the self-incompatibility locus (S-locus) in two closely related Arabidopsis species, obtained from individual BAC libraries. We use this extensive dataset to highlight sharply contrasted patterns of molecular evolution of each of the two genes controlling self-incompatibility themselves, as well as of the genomic region surrounding them. We find strong collinearity of the flanking regions among haplotypes on each side of the S-locus together with high levels of sequence similarity. In contrast, the S-locus region itself shows spectacularly deep gene genealogies, high variability in size and gene organization, as well as complete absence of sequence similarity in intergenic sequences and striking accumulation of transposable elements. Of particular interest, we demonstrate that dominant and recessive S-haplotypes experience sharply contrasted patterns of molecular evolution. Indeed, dominant haplotypes exhibit larger size and a much higher density of transposable elements, being matched only by that in the centromere. Overall, these properties highlight that the S-locus presents many striking similarities with other regions involved in the determination of mating-types, such as sex chromosomes in animals or in plants, or the mating-type locus in fungi and green algae.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Evolución Molecular , Haplotipos , Autoincompatibilidad en las Plantas con Flores/genética , Elementos Transponibles de ADN/genética , Reordenamiento Génico , Genes Dominantes , Genes Recesivos , Filogenia , Recombinación Genética , Análisis de Secuencia de ADN
9.
BMC Genomics ; 15: 891, 2014 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-25306241

RESUMEN

BACKGROUND: Many plant-pathogenic fungi have a tendency towards genome size expansion, mostly driven by increasing content of transposable elements (TEs). Through comparative and evolutionary genomics, five members of the Leptosphaeria maculans-Leptosphaeria biglobosa species complex (class Dothideomycetes, order Pleosporales), having different host ranges and pathogenic abilities towards cruciferous plants, were studied to infer the role of TEs on genome shaping, speciation, and on the rise of better adapted pathogens. RESULTS: L. maculans 'brassicae', the most damaging species on oilseed rape, is the only member of the species complex to have a TE-invaded genome (32.5%) compared to the other members genomes (<4%). These TEs had an impact at the structural level by creating large TE-rich regions and are suspected to have been instrumental in chromosomal rearrangements possibly leading to speciation. TEs, associated with species-specific genes involved in disease process, also possibly had an incidence on evolution of pathogenicity by promoting translocations of effector genes to highly dynamic regions and thus tuning the regulation of effector gene expression in planta. CONCLUSIONS: Invasion of L. maculans 'brassicae' genome by TEs followed by bursts of TE activity allowed this species to evolve and to better adapt to its host, making this genome species a peculiarity within its own species complex as well as in the Pleosporales lineage.


Asunto(s)
Adaptación Fisiológica/genética , Ascomicetos/genética , Ascomicetos/fisiología , Elementos Transponibles de ADN/genética , Evolución Molecular , Interacciones Huésped-Patógeno , Plantas/microbiología , Ascomicetos/metabolismo , Ascomicetos/patogenicidad , Cromosomas Fúngicos/genética , Secuencia Conservada/genética , Genes Fúngicos/genética , Genómica , Familia de Multigenes/genética , Filogenia , Especificidad de la Especie , Sintenía/genética
10.
Environ Microbiol ; 16(2): 525-44, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23841906

RESUMEN

Magnetotactic bacteria (MTB) are capable of synthesizing intracellular organelles, the magnetosomes, that are membrane-bounded magnetite or greigite crystals arranged in chains. Although MTB are widely spread in various ecosystems, few axenic cultures are available, and only freshwater Magnetospirillum spp. have been genetically analysed. Here, we present the complete genome sequence of a marine magnetotactic spirillum, Magnetospira sp. QH-2. The high number of repeats and transposable elements account for the differences in QH-2 genome structure compared with other relatives. Gene cluster synteny and gene correlation analyses indicate that the insertion of the magnetosome island in the QH-2 genome occurred after divergence between freshwater and marine magnetospirilla. The presence of a sodium-quinone reductase, sodium transporters and other functional genes are evidence of the adaptive evolution of Magnetospira sp. QH-2 to the marine ecosystem. Genes well conserved among freshwater magnetospirilla for nitrogen fixation and assimilatory nitrate respiration are absent from the QH-2 genome. Unlike freshwater Magnetospirillum spp., marine Magnetospira sp. QH-2 neither has TonB and TonB-dependent receptors nor does it grow on trace amounts of iron. Taken together, our results show a distinct, adaptive evolution of Magnetospira sp. QH-2 to marine sediments in comparison with its closely related freshwater counterparts.


Asunto(s)
Evolución Biológica , Ecosistema , Genoma Bacteriano , Magnetospirillum/genética , Adaptación Biológica/genética , Proteínas Bacterianas/genética , Hibridación Genómica Comparativa , Elementos Transponibles de ADN , ADN Bacteriano/genética , Islas Genómicas , Magnetosomas/genética , Magnetospirillum/fisiología , Familia de Multigenes , Filogenia , Quinona Reductasas/genética , Agua de Mar/microbiología , Simportadores/genética , Sintenía
11.
PLoS Genet ; 7(12): e1002430, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22216014

RESUMEN

Fossil records indicate that life appeared in marine environments ∼3.5 billion years ago (Gyr) and transitioned to terrestrial ecosystems nearly 2.5 Gyr. Sequence analysis suggests that "hydrobacteria" and "terrabacteria" might have diverged as early as 3 Gyr. Bacteria of the genus Azospirillum are associated with roots of terrestrial plants; however, virtually all their close relatives are aquatic. We obtained genome sequences of two Azospirillum species and analyzed their gene origins. While most Azospirillum house-keeping genes have orthologs in its close aquatic relatives, this lineage has obtained nearly half of its genome from terrestrial organisms. The majority of genes encoding functions critical for association with plants are among horizontally transferred genes. Our results show that transition of some aquatic bacteria to terrestrial habitats occurred much later than the suggested initial divergence of hydro- and terrabacterial clades. The birth of the genus Azospirillum approximately coincided with the emergence of vascular plants on land.


Asunto(s)
Organismos Acuáticos/genética , Azospirillum/genética , Evolución Biológica , Ecosistema , Transferencia de Gen Horizontal/genética , Genoma Bacteriano/genética , Rhodospirillaceae/genética , Secuencia de Bases , Genes Esenciales/genética , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Filogenia , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética
12.
BMC Genomics ; 14: 252, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23586779

RESUMEN

BACKGROUND: During host specialization, inactivation of genes whose function is no more required is favored by changes in selective constraints and evolutionary bottlenecks. The Gram positive bacteria Streptococcus agalactiae (also called GBS), responsible for septicemia and meningitis in neonates also emerged during the seventies as a cause of severe epidemics in fish farms. To decipher the genetic basis for the emergence of these highly virulent GBS strains and of their adaptation to fish, we have analyzed the genomic sequence of seven strains isolated from fish and other poikilotherms. RESULTS: Comparative analysis shows that the two groups of GBS strains responsible for fish epidemic diseases are only distantly related. While strains belonging to the clonal complex 7 cannot be distinguished from their human CC7 counterparts according to their gene content, strains belonging to the ST260-261 types probably diverged a long time ago. In this lineage, specialization to the fish host was correlated with a massive gene inactivation and broad changes in gene expression. We took advantage of the low level of sequence divergence between GBS strains and of the emergence of sublineages to reconstruct the different steps involved in this process. Non-homologous recombination was found to have played a major role in the genome erosion. CONCLUSIONS: Our results show that the early phase of genome reduction during host specialization mostly involves accumulation of small and likely reversible indels, followed by a second evolutionary step marked by a higher frequency of large deletions.


Asunto(s)
Adaptación Fisiológica , Evolución Molecular , Filogenia , Streptococcus agalactiae/genética , Streptococcus agalactiae/fisiología , Animales , Redes Reguladoras de Genes/genética , Genómica , Interacciones Huésped-Patógeno , Humanos , Mutación INDEL/genética , Eliminación de Secuencia/genética , Especificidad de la Especie , Factores de Virulencia/genética
13.
BMC Genomics ; 14: 286, 2013 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-23622346

RESUMEN

BACKGROUND: Nocardia cyriacigeorgica is recognized as one of the most prevalent etiological agents of human nocardiosis. Human exposure to these Actinobacteria stems from direct contact with contaminated environmental matrices. The full genome sequence of N. cyriacigeorgica strain GUH-2 was studied to infer major trends in its evolution, including the acquisition of novel genetic elements that could explain its ability to thrive in multiple habitats. RESULTS: N. cyriacigeorgica strain GUH-2 genome size is 6.19 Mb-long, 82.7% of its CDS have homologs in at least another actinobacterial genome, and 74.5% of these are found in N. farcinica. Among N. cyriacigeorgica specific CDS, some are likely implicated in niche specialization such as those involved in denitrification and RuBisCO production, and are found in regions of genomic plasticity (RGP). Overall, 22 RGP were identified in this genome, representing 11.4% of its content. Some of these RGP encode a recombinase and IS elements which are indicative of genomic instability. CDS playing part in virulence were identified in this genome such as those involved in mammalian cell entry or encoding a superoxide dismutase. CDS encoding non ribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) were identified, with some being likely involved in the synthesis of siderophores and toxins. COG analyses showed this genome to have an organization similar to environmental Actinobacteria. CONCLUSION: N. cyriacigeorgica GUH-2 genome shows features suggesting a diversification from an ancestral saprophytic state. GUH-2 ability at acquiring foreign DNA was found significant and to have led to functional changes likely beneficial for its environmental cycle and opportunistic colonization of a human host.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Molecular , Genoma Bacteriano , Nocardia/genética , Actinobacteria/genética , Animales , Hibridación Genómica Comparativa , Elementos Transponibles de ADN , ADN Bacteriano/genética , Femenino , Metaboloma , Ratones , Ratones Endogámicos BALB C , Nocardia/patogenicidad , Filogenia , Sintenía , Virulencia
14.
Cell Genom ; 3(4): 100295, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37082140

RESUMEN

Sea urchins are emblematic models in developmental biology and display several characteristics that set them apart from other deuterostomes. To uncover the genomic cues that may underlie these specificities, we generated a chromosome-scale genome assembly for the sea urchin Paracentrotus lividus and an extensive gene expression and epigenetic profiles of its embryonic development. We found that, unlike vertebrates, sea urchins retained ancestral chromosomal linkages but underwent very fast intrachromosomal gene order mixing. We identified a burst of gene duplication in the echinoid lineage and showed that some of these expanded genes have been recruited in novel structures (water vascular system, Aristotle's lantern, and skeletogenic micromere lineage). Finally, we identified gene-regulatory modules conserved between sea urchins and chordates. Our results suggest that gene-regulatory networks controlling development can be conserved despite extensive gene order rearrangement.

15.
J Bacteriol ; 194(13): 3539-40, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22689231

RESUMEN

Marinobacter hydrocarbonoclasticus SP17 forms biofilms specifically at the interface between water and hydrophobic organic compounds (HOCs) that are used as carbon and energy sources. Biofilm formation at the HOC-water interface has been recognized as a strategy to overcome the low availability of these nearly water-insoluble substrates. Here, we present the genome sequence of SP17, which could provide further insights into the mechanisms of enhancement of HOCs assimilation through biofilm formation.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Genoma Bacteriano , Interacciones Hidrofóbicas e Hidrofílicas , Marinobacter/genética , Compuestos Orgánicos , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Alcanos , Marinobacter/clasificación , Marinobacter/crecimiento & desarrollo , Datos de Secuencia Molecular , Análisis de Secuencia de ADN/métodos
16.
J Bacteriol ; 194(8): 2098-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22461543

RESUMEN

The pathogenic strain Nocardia cyriacigeorgica GUH-2 was isolated from a fatal human nocardiosis case, and its genome was sequenced. The complete genomic sequence of this strain contains 6,194,645 bp, an average G+C content of 68.37%, and no plasmids. We also identified several protein-coding genes to which N. cyriacigeorgica's virulence can potentially be attributed.


Asunto(s)
Genoma Bacteriano , Nocardiosis/microbiología , Nocardia/clasificación , Nocardia/genética , Animales , Regulación Bacteriana de la Expresión Génica , Humanos , Datos de Secuencia Molecular
17.
J Bacteriol ; 194(2): 551-2, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22207753

RESUMEN

Methylomicrobium strains are widespread in saline environments. Here, we report the complete genome sequence of Methylomicrobium alcaliphilum 20Z, a haloalkaliphilic methanotrophic bacterium, which will provide the basis for detailed characterization of the core pathways of both single-carbon metabolism and responses to osmotic and high-pH stresses. Final assembly of the genome sequence revealed that this bacterium contains a 128-kb plasmid, making M. alcaliphilum 20Z the first methanotrophic bacterium of known genome sequence for which a plasmid has been reported.


Asunto(s)
Gammaproteobacteria/genética , Genoma Bacteriano , Datos de Secuencia Molecular , Plásmidos/genética
18.
BMC Genomics ; 13: 658, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23171051

RESUMEN

BACKGROUND: Xanthomonas albilineans causes leaf scald, a lethal disease of sugarcane. X. albilineans exhibits distinctive pathogenic mechanisms, ecology and taxonomy compared to other species of Xanthomonas. For example, this species produces a potent DNA gyrase inhibitor called albicidin that is largely responsible for inducing disease symptoms; its habitat is limited to xylem; and the species exhibits large variability. A first manuscript on the complete genome sequence of the highly pathogenic X. albilineans strain GPE PC73 focused exclusively on distinctive genomic features shared with Xylella fastidiosa-another xylem-limited Xanthomonadaceae. The present manuscript on the same genome sequence aims to describe all other pathogenicity-related genomic features of X. albilineans, and to compare, using suppression subtractive hybridization (SSH), genomic features of two strains differing in pathogenicity. RESULTS: Comparative genomic analyses showed that most of the known pathogenicity factors from other Xanthomonas species are conserved in X. albilineans, with the notable absence of two major determinants of the "artillery" of other plant pathogenic species of Xanthomonas: the xanthan gum biosynthesis gene cluster, and the type III secretion system Hrp (hypersensitive response and pathogenicity). Genomic features specific to X. albilineans that may contribute to specific adaptation of this pathogen to sugarcane xylem vessels were also revealed. SSH experiments led to the identification of 20 genes common to three highly pathogenic strains but missing in a less pathogenic strain. These 20 genes, which include four ABC transporter genes, a methyl-accepting chemotaxis protein gene and an oxidoreductase gene, could play a key role in pathogenicity. With the exception of hypothetical proteins revealed by our comparative genomic analyses and SSH experiments, no genes potentially involved in any offensive or counter-defensive mechanism specific to X. albilineans were identified, supposing that X. albilineans has a reduced artillery compared to other pathogenic Xanthomonas species. Particular attention has therefore been given to genomic features specific to X. albilineans making it more capable of evading sugarcane surveillance systems or resisting sugarcane defense systems. CONCLUSIONS: This study confirms that X. albilineans is a highly distinctive species within the genus Xanthomonas, and opens new perpectives towards a greater understanding of the pathogenicity of this destructive sugarcane pathogen.


Asunto(s)
Genoma Bacteriano/genética , Saccharum/microbiología , Factores de Virulencia/genética , Xanthomonas/patogenicidad , Xilema/microbiología , Transportadoras de Casetes de Unión a ATP/genética , Adhesinas Bacterianas/genética , Secuencia de Bases , Mapeo Cromosómico , Análisis por Conglomerados , Genes Bacterianos/genética , Immunoblotting , Secuencias Invertidas Repetidas/genética , Modelos Genéticos , Datos de Secuencia Molecular , Técnicas de Amplificación de Ácido Nucleico/métodos , Filogenia , Percepción de Quorum/genética , Análisis de Secuencia de ADN , Transducción de Señal/genética , Especificidad de la Especie , Xanthomonas/genética
19.
Nature ; 440(7085): 790-4, 2006 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-16598256

RESUMEN

Anaerobic ammonium oxidation (anammox) has become a main focus in oceanography and wastewater treatment. It is also the nitrogen cycle's major remaining biochemical enigma. Among its features, the occurrence of hydrazine as a free intermediate of catabolism, the biosynthesis of ladderane lipids and the role of cytoplasm differentiation are unique in biology. Here we use environmental genomics--the reconstruction of genomic data directly from the environment--to assemble the genome of the uncultured anammox bacterium Kuenenia stuttgartiensis from a complex bioreactor community. The genome data illuminate the evolutionary history of the Planctomycetes and allow us to expose the genetic blueprint of the organism's special properties. Most significantly, we identified candidate genes responsible for ladderane biosynthesis and biological hydrazine metabolism, and discovered unexpected metabolic versatility.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Evolución Biológica , Genoma Bacteriano , Compuestos de Amonio Cuaternario/metabolismo , Anaerobiosis , Bacterias/clasificación , Reactores Biológicos , Evolución Molecular , Ácidos Grasos/biosíntesis , Genes Bacterianos/genética , Hidrazinas/metabolismo , Hidrolasas/metabolismo , Operón/genética , Oxidorreductasas/metabolismo , Filogenia , Termodinámica
20.
PLoS Genet ; 5(1): e1000344, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19165319

RESUMEN

The Escherichia coli species represents one of the best-studied model organisms, but also encompasses a variety of commensal and pathogenic strains that diversify by high rates of genetic change. We uniformly (re-) annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species), including seven that we sequenced to completion. Within the approximately 18,000 families of orthologous genes, we found approximately 2,000 common to all strains. Although recombination rates are much higher than mutation rates, we show, both theoretically and using phylogenetic inference, that this does not obscure the phylogenetic signal, which places the B2 phylogenetic group and one group D strain at the basal position. Based on this phylogeny, we inferred past evolutionary events of gain and loss of genes, identifying functional classes under opposite selection pressures. We found an important adaptive role for metabolism diversification within group B2 and Shigella strains, but identified few or no extraintestinal virulence-specific genes, which could render difficult the development of a vaccine against extraintestinal infections. Genome flux in E. coli is confined to a small number of conserved positions in the chromosome, which most often are not associated with integrases or tRNA genes. Core genes flanking some of these regions show higher rates of recombination, suggesting that a gene, once acquired by a strain, spreads within the species by homologous recombination at the flanking genes. Finally, the genome's long-scale structure of recombination indicates lower recombination rates, but not higher mutation rates, at the terminus of replication. The ensuing effect of background selection and biased gene conversion may thus explain why this region is A+T-rich and shows high sequence divergence but low sequence polymorphism. Overall, despite a very high gene flow, genes co-exist in an organised genome.


Asunto(s)
Escherichia coli/genética , Genoma Bacteriano , Elementos Transponibles de ADN , Evolución Molecular , Genética , Genoma , Genómica , Funciones de Verosimilitud , Modelos Biológicos , Modelos Genéticos , Filogenia , Polimorfismo Genético , Recombinación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA