Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(10): 3038-43, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25733896

RESUMEN

Premature termination codons (PTCs) in an mRNA ORF inactivate gene function by causing production of a truncated protein and destabilization of the mRNA. Readthrough of a PTC allows ribosomal A-site insertion of a near-cognate tRNA, leading to synthesis of a full-length protein from otherwise defective mRNA. To understand the mechanism of such nonsense suppression, we developed a yeast system that allows purification and sequence analysis of full-length readthrough products arising as a consequence of endogenous readthrough or the compromised termination fidelity attributable to the loss of Upf (up-frameshift) factors, defective release factors, or the presence of the aminoglycoside gentamicin. Unlike classical "wobble" models, our analyses showed that three of four possible near-cognate tRNAs could mispair at position 1 or 3 of nonsense codons and that, irrespective of whether readthrough is endogenous or induced, the same sets of amino acids are inserted. We identified the insertion of Gln, Tyr, and Lys at UAA and UAG, whereas Trp, Arg, and Cys were inserted at UGA, and the frequency of insertion of individual amino acids was distinct for specific nonsense codons and readthrough-inducing agents. Our analysis suggests that the use of genetic or chemical means to increase readthrough does not promote novel or alternative mispairing events; rather, readthrough effectors cause quantitative enhancement of endogenous mistranslation events. Knowledge of the amino acids incorporated during readthrough not only elucidates the decoding process but also may allow predictions of the functionality of readthrough protein products.


Asunto(s)
Emparejamiento Base , Codón , ARN de Transferencia/genética
2.
Nature ; 453(7199): 1276-80, 2008 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-18496529

RESUMEN

Efficient translation initiation and optimal stability of most eukaryotic messenger RNAs depends on the formation of a closed-loop structure and the resulting synergistic interplay between the 5' m(7)G cap and the 3' poly(A) tail. Evidence of eIF4G and Pab1 interaction supports the notion of a closed-loop mRNP, but the mechanistic events that lead to its formation and maintenance are still unknown. Here we use toeprinting and polysome profiling assays to delineate ribosome positioning at initiator AUG codons and ribosome-mRNA association, respectively, and find that two distinct stable (resistant to cap analogue) closed-loop structures are formed during initiation in yeast cell-free extracts. The integrity of both forms requires the mRNA cap and poly(A) tail, as well as eIF4E, eIF4G, Pab1 and eIF3, and is dependent on the length of both the mRNA and the poly(A) tail. Formation of the first structure requires the 48S ribosomal complex, whereas the second requires an 80S ribosome and the termination factors eRF3/Sup35 and eRF1/Sup45. The involvement of the termination factors is independent of a termination event.


Asunto(s)
Biosíntesis de Proteínas , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/genética , Animales , Secuencia de Bases , Codón Iniciador/genética , Cicloheximida/farmacología , Factor 4G Eucariótico de Iniciación/metabolismo , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Polirribosomas/genética , Polirribosomas/metabolismo , Priones/metabolismo , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleoproteínas/genética , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Ribosomas/química , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nature ; 432(7013): 112-8, 2004 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-15525991

RESUMEN

Nonsense-mediated messenger RNA decay (NMD) is triggered by premature translation termination, but the features distinguishing premature from normal termination are unknown. One model for NMD suggests that decay-inducing factors bound to mRNAs during early processing events are routinely removed by elongating ribosomes but remain associated with mRNAs when termination is premature, triggering rapid turnover. Recent experiments challenge this notion and suggest a model that posits that mRNA decay is activated by the intrinsically aberrant nature of premature termination. Here we use a primer extension inhibition (toeprinting) assay to delineate ribosome positioning and find that premature translation termination in yeast extracts is indeed aberrant. Ribosomes encountering premature UAA or UGA codons in the CAN1 mRNA fail to release and, instead, migrate to upstream AUGs. This anomaly depends on prior nonsense codon recognition and is eliminated in extracts derived from cells lacking the principal NMD factor, Upf1p, or by flanking the nonsense codon with a normal 3'-untranslated region (UTR). Tethered poly(A)-binding protein (Pab1p), used as a mimic of a normal 3'-UTR, recruits the termination factor Sup35p (eRF3) and stabilizes nonsense-containing mRNAs. These findings indicate that efficient termination and mRNA stability are dependent on a properly configured 3'-UTR.


Asunto(s)
Regiones no Traducidas 3'/metabolismo , Codón sin Sentido/genética , Terminación de la Cadena Péptídica Traduccional/genética , Estabilidad del ARN , Saccharomyces cerevisiae/genética , Regiones no Traducidas 3'/genética , Secuencia de Bases , Sitios de Unión , Extractos Celulares , Cicloheximida/farmacología , ARN de Hongos/genética , ARN de Hongos/metabolismo
4.
Mol Cell Biol ; 24(10): 4196-206, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15121841

RESUMEN

Posttranscriptional maturation of the 3' end of eukaryotic pre-mRNAs occurs as a three-step pathway involving site-specific cleavage, polymerization of a poly(A) tail, and trimming of the newly synthesized tail to its mature length. While most of the factors essential for catalyzing these reactions have been identified, those that regulate them remain to be characterized. Previously, we demonstrated that the yeast protein Pbp1p associates with poly(A)-binding protein (Pab1p) and controls the extent of mRNA polyadenylation. To further elucidate the function of Pbp1p, we conducted a two-hybrid screen to identify factors with which it interacts. Five genes encoding putative Pbp1p-interacting proteins were identified, including (i) FIR1/PIP1 and UFD1/PIP3, genes encoding factors previously implicated in mRNA 3'-end processing; (ii) PBP1 itself, confirming directed two-hybrid results and suggesting that Pbp1p can multimerize; (iii) DIG1, encoding a mitogen-activated protein kinase-associated protein; and (iv) PBP4 (YDL053C), a previously uncharacterized gene. In vitro polyadenylation reactions utilizing extracts derived from fir1 Delta and pbp1 Delta cells and from cells lacking the Fir1p interactor, Ref2p, demonstrated that Pbp1p, Fir1p, and Ref2p are all required for the formation of a normal-length poly(A) tail on precleaved CYC1 pre-mRNA. Kinetic analyses of the respective polyadenylation reactions indicated that Pbp1p is a negative regulator of poly(A) nuclease (PAN) activity and that Fir1p and Ref2p are, respectively, a positive regulator and a negative regulator of poly(A) synthesis. We suggest a model in which these three factors and Ufd1p are part of a regulatory complex that exploits Pab1p to link cleavage and polyadenylation factors of CFIA and CFIB (cleavage factors IA and IB) to the polyadenylation factors of CPF (cleavage and polyadenylation factor).


Asunto(s)
Poliadenilación , Secuencia de Bases , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , ADN de Hongos/genética , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Genes Fúngicos , Prueba de Complementación Genética , Mapeo Peptídico , Polinucleotido Adenililtransferasa/genética , Polinucleotido Adenililtransferasa/metabolismo , Estructura Terciaria de Proteína , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas del Sistema de Dos Híbridos , Factores de Escisión y Poliadenilación de ARNm
5.
Mol Cell Biol ; 24(12): 5521-33, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15169912

RESUMEN

PAN, a yeast poly(A) nuclease, plays an important nuclear role in the posttranscriptional maturation of mRNA poly(A) tails. The activity of this enzyme is dependent on its Pan2p and Pan3p subunits, as well as the presence of poly(A)-binding protein (Pab1p). We have identified and characterized the associated network of factors controlling the maturation of mRNA poly(A) tails in yeast and defined its relevant protein-protein interactions. Pan3p, a positive regulator of PAN activity, interacts with Pab1p, thus providing substrate specificity for this nuclease. Pab1p also regulates poly(A) tail trimming by interacting with Pbp1p, a factor that appears to negatively regulate PAN. Pan3p and Pbp1p both interact with themselves and with the C terminus of Pab1p. However, the domains required for Pan3p and Pbp1p binding on Pab1p are distinct. Single amino acid changes that disrupt Pan3p interaction with Pab1p have been identified and define a binding pocket in helices 2 and 3 of Pab1p's carboxy terminus. The importance of these amino acids for Pab1p-Pan3p interaction, and poly(A) tail regulation, is underscored by experiments demonstrating that strains harboring substitutions in these residues accumulate mRNAs with long poly(A) tails in vivo.


Asunto(s)
Exorribonucleasas/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión/genética , ADN de Hongos/genética , Exorribonucleasas/química , Exorribonucleasas/genética , Genes Fúngicos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Mapeo Peptídico , Proteínas de Unión a Poli(A)/metabolismo , Estructura Terciaria de Proteína , Subunidades de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas del Sistema de Dos Híbridos
6.
J Biol Chem ; 282(34): 25067-75, 2007 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-17595167

RESUMEN

The poly(A)-binding protein (PABP) is an essential protein found in all eukaryotes and is involved in an extensive range of cellular functions, including translation, mRNA metabolism, and mRNA export. Its C-terminal region contains a peptide-interacting PABC domain that recruits proteins containing a highly specific PAM-2 sequence motif to the messenger ribonucleoprotein complex. In humans, these proteins, including Paip1, Paip2, eRF3 (eukaryotic release factor 3), Ataxin-2, and Tob2, are all found to regulate translation through varying mechanisms. The following reports poly(A) nuclease (PAN) as a PABC-interacting partner in both yeast and humans. Their interaction is mediated by a PAM-2 motif identified within the PAN3 subunit. This site was identified in various fungal and animal species suggesting that the interaction is conserved throughout evolution. Our results indicate that PABP is directly involved in recruiting a deadenylase to the messenger ribonucleoprotein complex. This demonstrates a novel role for the PABC domain in mRNA metabolic processes and gives further insight into the function of PABP in mRNA maturation, export, and turnover.


Asunto(s)
Proteínas de Unión a Poli(A)/química , Ribonucleasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Evolución Molecular , Exorribonucleasas/metabolismo , Proteínas Fúngicas/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos
7.
Genome Biol ; 4(7): 223, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12844354

RESUMEN

Most eukaryotic mRNAs are subject to considerable post-transcriptional modification, including capping, splicing, and polyadenylation. The process of polyadenylation adds a 3' poly(A) tail and provides the mRNA with a binding site for a major class of regulatory factors, the poly(A)-binding proteins (PABPs). These highly conserved polypeptides are found only in eukaryotes; single-celled eukaryotes each have a single PABP, whereas humans have five and Arabidopis has eight. They typically bind poly(A) using one or more RNA-recognition motifs, globular domains common to numerous other eukaryotic RNA-binding proteins. Although they lack catalytic activity, PABPs have several roles in mediating gene expression. Nuclear PABPs are necessary for the synthesis of the poly(A) tail, regulating its ultimate length and stimulating maturation of the mRNA. Association with PABP is also a requirement for some mRNAs to be exported from the nucleus. In the cytoplasm, PABPs facilitate the formation of the 'closed loop' structure of the messenger ribonucleoprotein particle that is crucial for additional PABP activities that promote translation initiation and termination, recycling of ribosomes, and stability of the mRNA. Collectively, these sequential nuclear and cytoplasmic contributions comprise a cycle in which PABPs and the poly(A) tail first create and then eliminate a network of cis- acting interactions that control mRNA function.


Asunto(s)
Proteínas de Unión a Poli(A)/fisiología , Procesamiento Postranscripcional del ARN , Transporte Activo de Núcleo Celular , Animales , Núcleo Celular/metabolismo , Evolución Molecular , Humanos , Sustancias Macromoleculares , Filogenia , Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/genética , Poliadenilación , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Estabilidad del ARN , ARN Mensajero/metabolismo
8.
RNA ; 8(3): 336-44, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12003493

RESUMEN

The mRNA poly(A) tail serves different purposes, including the facilitation of nuclear export, mRNA stabilization, efficient translation, and, finally, specific degradation. The posttranscriptional addition of a poly(A) tail depends on sequence motifs in the 3' untranslated region (3' UTR) of the mRNA and a complex trans-acting protein machinery. In this study, we have replaced the 3' UTR of the yeast TRP4 gene with sequences encoding a hammerhead ribozyme that efficiently cleaves itself in vivo. Expression of the TRP4-ribozyme allele resulted in the accumulation of a nonpolyadenylated mRNA. Cells expressing the TRP4-ribozyme mRNA showed a reduced growth rate due to a reduction in Trp4p enzyme activity. The reduction in enzyme activity was not caused by inefficient mRNA export from the nucleus or mRNA destabilization. Rather, analyses of mRNA association with polyribosomes indicate that translation of the ribozyme-containing mRNA is impaired. This translational defect allows sufficient synthesis of Trp4p to support growth of trp4 cells, but is, nevertheless, of such magnitude as to activate the general control network of amino acid biosynthesis.


Asunto(s)
Regiones no Traducidas 3'/genética , Antranilato Fosforribosiltransferasa/metabolismo , Poli A/metabolismo , ARN Catalítico/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/enzimología , Regiones no Traducidas 3'/metabolismo , Transporte Activo de Núcleo Celular , Antranilato Fosforribosiltransferasa/genética , Sitios de Unión , División Celular/fisiología , Expresión Génica/genética , Plásmidos , Poli A/genética , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN , ARN Catalítico/genética , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Triptófano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA