Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34301891

RESUMEN

Clinical research into consciousness has long focused on cortical macroscopic networks and their disruption in pathological or pharmacological consciousness perturbation. Despite demonstrating diagnostic utility in disorders of consciousness (DoC) and monitoring anesthetic depth, these cortico-centric approaches have been unable to characterize which neurochemical systems may underpin consciousness alterations. Instead, preclinical experiments have long implicated the dopaminergic ventral tegmental area (VTA) in the brainstem. Despite dopaminergic agonist efficacy in DoC patients equally pointing to dopamine, the VTA has not been studied in human perturbed consciousness. To bridge this translational gap between preclinical subcortical and clinical cortico-centric perspectives, we assessed functional connectivity changes of a histologically characterized VTA using functional MRI recordings of pharmacologically (propofol sedation) and pathologically perturbed consciousness (DoC patients). Both cohorts demonstrated VTA disconnection from the precuneus and posterior cingulate (PCu/PCC), a main default mode network node widely implicated in consciousness. Strikingly, the stronger VTA-PCu/PCC connectivity was, the more the PCu/PCC functional connectome resembled its awake configuration, suggesting a possible neuromodulatory relationship. VTA-PCu/PCC connectivity increased toward healthy control levels only in DoC patients who behaviorally improved at follow-up assessment. To test whether VTA-PCu/PCC connectivity can be affected by a dopaminergic agonist, we demonstrated in a separate set of traumatic brain injury patients without DoC that methylphenidate significantly increased this connectivity. Together, our results characterize an in vivo dopaminergic connectivity deficit common to reversible and chronic consciousness perturbation. This noninvasive assessment of the dopaminergic system bridges preclinical and clinical work, associating dopaminergic VTA function with macroscopic network alterations, thereby elucidating a critical aspect of brainstem-cortical interplay for consciousness.


Asunto(s)
Lesiones Traumáticas del Encéfalo/complicaciones , Tronco Encefálico/patología , Conectoma , Trastornos de la Conciencia/patología , Dopamina/metabolismo , Propofol/farmacología , Área Tegmental Ventral/patología , Vigilia/efectos de los fármacos , Adolescente , Adulto , Anciano , Tronco Encefálico/efectos de los fármacos , Estudios de Casos y Controles , Trastornos de la Conciencia/etiología , Trastornos de la Conciencia/metabolismo , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Área Tegmental Ventral/efectos de los fármacos , Adulto Joven
2.
Brain ; 145(6): 2064-2076, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35377407

RESUMEN

There is substantial interest in the potential for traumatic brain injury to result in progressive neurological deterioration. While blood biomarkers such as glial fibrillary acid protein (GFAP) and neurofilament light have been widely explored in characterizing acute traumatic brain injury (TBI), their use in the chronic phase is limited. Given increasing evidence that these proteins may be markers of ongoing neurodegeneration in a range of diseases, we examined their relationship to imaging changes and functional outcome in the months to years following TBI. Two-hundred and three patients were recruited in two separate cohorts; 6 months post-injury (n = 165); and >5 years post-injury (n = 38; 12 of whom also provided data ∼8 months post-TBI). Subjects underwent blood biomarker sampling (n = 199) and MRI (n = 172; including diffusion tensor imaging). Data from patient cohorts were compared to 59 healthy volunteers and 21 non-brain injury trauma controls. Mean diffusivity and fractional anisotropy were calculated in cortical grey matter, deep grey matter and whole brain white matter. Accelerated brain ageing was calculated at a whole brain level as the predicted age difference defined using T1-weighted images, and at a voxel-based level as the annualized Jacobian determinants in white matter and grey matter, referenced to a population of 652 healthy control subjects. Serum neurofilament light concentrations were elevated in the early chronic phase. While GFAP values were within the normal range at ∼8 months, many patients showed a secondary and temporally distinct elevations up to >5 years after injury. Biomarker elevation at 6 months was significantly related to metrics of microstructural injury on diffusion tensor imaging. Biomarker levels at ∼8 months predicted white matter volume loss at >5 years, and annualized brain volume loss between ∼8 months and 5 years. Patients who worsened functionally between ∼8 months and >5 years showed higher than predicted brain age and elevated neurofilament light levels. GFAP and neurofilament light levels can remain elevated months to years after TBI, and show distinct temporal profiles. These elevations correlate closely with microstructural injury in both grey and white matter on contemporaneous quantitative diffusion tensor imaging. Neurofilament light elevations at ∼8 months may predict ongoing white matter and brain volume loss over >5 years of follow-up. If confirmed, these findings suggest that blood biomarker levels at late time points could be used to identify TBI survivors who are at high risk of progressive neurological damage.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Sustancia Blanca , Biomarcadores , Lesiones Encefálicas/complicaciones , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Progresión de la Enfermedad , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos
3.
Brain ; 145(11): 4097-4107, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36065116

RESUMEN

COVID-19 is associated with neurological complications including stroke, delirium and encephalitis. Furthermore, a post-viral syndrome dominated by neuropsychiatric symptoms is common, and is seemingly unrelated to COVID-19 severity. The true frequency and underlying mechanisms of neurological injury are unknown, but exaggerated host inflammatory responses appear to be a key driver of COVID-19 severity. We investigated the dynamics of, and relationship between, serum markers of brain injury [neurofilament light (NfL), glial fibrillary acidic protein (GFAP) and total tau] and markers of dysregulated host response (autoantibody production and cytokine profiles) in 175 patients admitted with COVID-19 and 45 patients with influenza. During hospitalization, sera from patients with COVID-19 demonstrated elevations of NfL and GFAP in a severity-dependent manner, with evidence of ongoing active brain injury at follow-up 4 months later. These biomarkers were associated with elevations of pro-inflammatory cytokines and the presence of autoantibodies to a large number of different antigens. Autoantibodies were commonly seen against lung surfactant proteins but also brain proteins such as myelin associated glycoprotein. Commensurate findings were seen in the influenza cohort. A distinct process characterized by elevation of serum total tau was seen in patients at follow-up, which appeared to be independent of initial disease severity and was not associated with dysregulated immune responses unlike NfL and GFAP. These results demonstrate that brain injury is a common consequence of both COVID-19 and influenza, and is therefore likely to be a feature of severe viral infection more broadly. The brain injury occurs in the context of dysregulation of both innate and adaptive immune responses, with no single pathogenic mechanism clearly responsible.


Asunto(s)
Lesiones Encefálicas , COVID-19 , Gripe Humana , Humanos , Proteínas de Neurofilamentos , COVID-19/complicaciones , Biomarcadores , Autoanticuerpos , Inmunidad
4.
J Head Trauma Rehabil ; 35(6): E513-E523, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32472833

RESUMEN

OBJECTIVE: To determine the effect of extracranial injury (ECI) on 6-month outcome in patients with mild traumatic brain injury (TBI) versus moderate-to-severe TBI. PARTICIPANTS/SETTING: Patients with TBI (n = 135) or isolated orthopedic injury (n = 25) admitted to a UK major trauma center and healthy volunteers (n = 99). DESIGN: Case-control observational study. MAIN MEASURES: Primary outcomes: (a) Glasgow Outcome Scale Extended (GOSE), (b) depression, (c) quality of life (QOL), and (d) cognitive impairment including verbal fluency, episodic memory, short-term recognition memory, working memory, sustained attention, and attentional flexibility. RESULTS: Outcome was influenced by both TBI severity and concomitant ECI. The influence of ECI was restricted to mild TBI; GOSE, QOL, and depression outcomes were significantly poorer following moderate-to-severe TBI than after isolated mild TBI (but not relative to mild TBI plus ECI). Cognitive impairment was driven solely by TBI severity. General health, bodily pain, semantic verbal fluency, spatial recognition memory, working memory span, and attentional flexibility were unaffected by TBI severity and additional ECI. CONCLUSION: The presence of concomitant ECI ought to be considered alongside brain injury severity when characterizing the functional and neurocognitive effects of TBI, with each presenting challenges to recovery.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Cognición , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/diagnóstico , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico , Escala de Consecuencias de Glasgow , Humanos , Calidad de Vida , Reino Unido
5.
J Cogn Neurosci ; 30(4): 526-539, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29211655

RESUMEN

Default mode network (DMN) functional connectivity is thought to occur primarily in low frequencies (<0.1 Hz), resulting in most studies removing high frequencies during data preprocessing. In contrast, subtractive task analyses include high frequencies, as these are thought to be task relevant. An emerging line of research explores resting fMRI data at higher-frequency bands, examining the possibility that functional connectivity is a multiband phenomenon. Furthermore, recent studies suggest DMN involvement in cognitive processing; however, without a systematic investigation of DMN connectivity during tasks, its functional contribution to cognition cannot be fully understood. We bridged these concurrent lines of research by examining the contribution of high frequencies in the relationship between DMN and dorsal attention network at rest and during task execution. Our findings revealed that the inclusion of high frequencies alters between network connectivity, resulting in reduced anticorrelation and increased positive connectivity between DMN and dorsal attention network. Critically, increased positive connectivity was observed only during tasks, suggesting an important role for high-frequency fluctuations in functional integration. Moreover, within-DMN connectivity during task execution correlated with RT only when high frequencies were included. These results show that DMN does not simply deactivate during task execution and suggest active recruitment while performing cognitively demanding paradigms.


Asunto(s)
Atención/fisiología , Encéfalo/fisiología , Actividad Motora/fisiología , Tiempo de Reacción/fisiología , Adulto , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Pruebas Neuropsicológicas , Descanso , Adulto Joven
6.
Brain Inj ; 32(8): 1040-1049, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29738277

RESUMEN

PRIMARY OBJECTIVE: To investigate functional improvement late (>6 months) after traumatic brain injury (TBI). To this end, we conducted a double-blind, placebo-controlled experimental medicine study to test the hypothesis that a widely used cognitive enhancer would benefit patients with TBI. RESEARCH DESIGN: We focused on motor control function using a sequential finger opposition fMRI paradigm in both patients and age-matched controls. METHODS AND PROCEDURES: Patients' fMRI and DTI scans were obtained after randomised administration of methylphenidate or placebo. Controls were scanned without intervention. To assess differences in motor speed, we compared reaction times from the baseline condition of a sustained attention task. MAIN OUTCOMES AND RESULTS: Patients' reaction times correlated with wide-spread motor-related white matter abnormalities. Administration of methylphenidate resulted in faster reaction times in patients, which were not significantly different from those achieved by controls. This was also reflected in the fMRI findings in that patients on methylphenidate activated the left inferior frontal gyrus significantly more than when on placebo. Furthermore, stronger functional connections between pre-/post-central cortices and cerebellum were noted for patients on methylphenidate. CONCLUSIONS: Our findings suggest that residual functionality in patients with TBI may be enhanced by a single dose of methylphenidate.


Asunto(s)
Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Estimulantes del Sistema Nervioso Central/uso terapéutico , Metilfenidato/uso terapéutico , Actividad Motora/fisiología , Vías Nerviosas/efectos de los fármacos , Adulto , Lesiones Traumáticas del Encéfalo/complicaciones , Mapeo Encefálico , Estudios de Casos y Controles , Trastornos del Conocimiento/diagnóstico por imagen , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/etiología , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Modelos Lineales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Actividad Motora/efectos de los fármacos , Vías Nerviosas/diagnóstico por imagen , Pruebas Neuropsicológicas , Oxígeno/sangre , Tiempo de Reacción/efectos de los fármacos , Tomografía Computarizada por Rayos X , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/efectos de los fármacos , Adulto Joven
7.
Brain Inj ; 31(11): 1513-1520, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28707953

RESUMEN

PRIMARY OBJECTIVE: To investigate the neural substrates of visual memory in a sample of patients with traumatic brain injury (TBI). We hypothesized that patients with decreased grey and white matter volume in frontal and parietal cortices as well as medial temporal and occipital lobes would perform poorly on the tests of visual memory analysed. METHODS AND PROCEDURES: 39 patients and 53 controls were assessed on tests of visual memory and learning from the Cambridge Neuropsychological Test Automated Battery (CANTAB). Patients with TBI were scanned with magnetic resonance imaging (MRI). Partial correlations and multiple regression analyses were used to examine relationships between cognitive variables and MRI volumetric findings. This study complements and extends previous studies by performing volumetric comparisons on a variety of resolution levels, from whole brain to voxel-based level analysis. MAIN OUTCOMES AND RESULTS: Patients with TBI performed significantly worse than controls in all the tasks assessed. Performance was associated with wide-spread reductions in grey and white matter volume of several cortical and subcortical structures as well as with cerebrospinal fluid space enlargement in accordance with previous studies of memory in patients with TBI and cognitive models suggesting that memory problems involve the alteration of multiple systems. CONCLUSIONS: Our results propose that compromised visual memory in patients with TBI is related to a distributed pattern of volume loss in regions mediating memory and attentional processing.


Asunto(s)
Mapeo Encefálico , Corteza Cerebral/patología , Lesión Axonal Difusa/complicaciones , Trastornos de la Memoria/etiología , Trastornos de la Memoria/patología , Reconocimiento en Psicología/fisiología , Adulto , Anciano , Análisis de Varianza , Aprendizaje por Asociación/fisiología , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Trastornos de la Memoria/diagnóstico por imagen , Persona de Mediana Edad , Pruebas Neuropsicológicas , Estimulación Luminosa , Adulto Joven
8.
J Neurosci ; 35(46): 15254-62, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26586814

RESUMEN

The default mode network (DMN) has been traditionally assumed to hinder behavioral performance in externally focused, goal-directed paradigms and to provide no active contribution to human cognition. However, recent evidence suggests greater DMN activity in an array of tasks, especially those that involve self-referential and memory-based processing. Although data that robustly demonstrate a comprehensive functional role for DMN remains relatively scarce, the global workspace framework, which implicates the DMN in global information integration for conscious processing, can potentially provide an explanation for the broad range of higher-order paradigms that report DMN involvement. We used graph theoretical measures to assess the contribution of the DMN to global functional connectivity dynamics in 22 healthy volunteers during an fMRI-based n-back working-memory paradigm with parametric increases in difficulty. Our predominant finding is that brain modularity decreases with greater task demands, thus adapting a more global workspace configuration, in direct relation to increases in reaction times to correct responses. Flexible default mode regions dynamically switch community memberships and display significant changes in their nodal participation coefficient and strength, which may reflect the observed whole-brain changes in functional connectivity architecture. These findings have important implications for our understanding of healthy brain function, as they suggest a central role for the DMN in higher cognitive processing. SIGNIFICANCE STATEMENT: The default mode network (DMN) has been shown to increase its activity during the absence of external stimulation, and hence was historically assumed to disengage during goal-directed tasks. Recent evidence, however, implicates the DMN in self-referential and memory-based processing. We provide robust evidence for this network's active contribution to working memory by revealing dynamic reconfiguration in its interactions with other networks and offer an explanation within the global workspace theoretical framework. These promising findings may help redefine our understanding of the exact DMN role in human cognition.


Asunto(s)
Mapeo Encefálico , Encéfalo/fisiología , Cognición/fisiología , Memoria a Corto Plazo/fisiología , Modelos Neurológicos , Dinámicas no Lineales , Adulto , Encéfalo/irrigación sanguínea , Femenino , Voluntarios Sanos , Humanos , Modelos Lineales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/irrigación sanguínea , Red Nerviosa/fisiología , Pruebas Neuropsicológicas , Adulto Joven
9.
Brain Inj ; 30(11): 1319-1328, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27467890

RESUMEN

INTRODUCTION: Despite the mounting evidence that depression is one of the most common psychiatric sequelae in survivors of traumatic brain injury (TBI), no studies so far have attempted to provide an explanation in terms of functional network integrity. This proof of concept study investigated the association between the severity of depressive symptoms and resting network integrity in a sample of patients with TBI and a group of healthy controls. METHODS: We first examined the association between depression symptomatology and global functional connectivity and then attempted to characterize the extent of differences in functional network integrity. RESULTS: The severity of depressive symptoms in patients with TBI was associated with neuroadaptations within the insula, the thalamus and the subgenual anterior cingulate cortex (ACC). Specifically, patients with TBI displayed increased connectivity between the insula and a region encompassing the rolandic operculum and the superior temporal cortex and reduced connectivity between the thalamus and the dorsolateral prefrontal cortex. CONCLUSIONS: These findings show the network level involvement of the insula, the thalamus and the subgenual ACC in the depressive symptomatology of patients with TBI and tentatively propose that TBI-induced depression may result from altered functional connectivity of a set of networks associated with emotional regulation. However, other factors including a number of adjustment issues and challenges may also lead to depression in this population.


Asunto(s)
Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/patología , Encéfalo/diagnóstico por imagen , Depresión/etiología , Vías Nerviosas/diagnóstico por imagen , Adolescente , Adulto , Lesiones Traumáticas del Encéfalo/psicología , Estudios de Cohortes , Depresión/diagnóstico por imagen , Femenino , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Oxígeno/sangre , Escalas de Valoración Psiquiátrica , Adulto Joven
10.
J Clin Med ; 13(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38337465

RESUMEN

(1) Background: Traumatic brain injury (TBI) often results in cognitive impairments, including in visuospatial planning and executive function. Methylphenidate (MPh) demonstrates potential improvements in several cognitive domains in patients with TBI. The Tower of London (TOL) is a visuospatial planning task used to assess executive function. (2) Methods: Volunteers with a history of TBI (n = 16) participated in a randomised, double-blinded, placebo-controlled, fMRI study to investigate the neurobiological correlates of visuospatial planning and executive function, on and off MPh. (3) Results: Healthy controls (HCs) (n = 18) and patients on placebo (TBI-placebo) differed significantly in reaction time (p < 0.0005) and accuracy (p < 0.0001) when considering all task loads, but especially for high cognitive loads for reaction time (p < 0.001) and accuracy (p < 0.005). Across all task loads, TBI-MPh were more accurate than TBI-placebo (p < 0.05) but remained less accurate than HCs (p < 0.005). TBI-placebo substantially improved in accuracy with MPh administration (TBI-MPh) to a level statistically comparable to HCs at low (p = 0.443) and high (p = 0.175) cognitive loads. Further, individual patients that performed slower on placebo at low cognitive loads were faster with MPh (p < 0.05), while individual patients that performed less accurately on placebo were more accurate with MPh at both high and low cognitive loads (p < 0.005). TBI-placebo showed reduced activity in the bilateral inferior frontal gyri (IFG) and insulae versus HCs. MPh normalised these regional differences. MPh enhanced within-network connectivity (between parietal, striatal, insula, and cerebellar regions) and enhanced beyond-network connectivity (between parietal, thalamic, and cerebellar regions). Finally, individual changes in cerebellar-thalamic (p < 0.005) and cerebellar-parietal (p < 0.05) connectivity with MPh related to individual changes in accuracy with MPh. (4) Conclusions: This work highlights behavioural and neurofunctional differences between HCs and patients with chronic TBI, and that adverse differences may benefit from MPh treatment.

11.
Nat Commun ; 15(1): 4745, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834553

RESUMEN

Functional interactions between brain regions can be viewed as a network, enabling neuroscientists to investigate brain function through network science. Here, we systematically evaluate 768 data-processing pipelines for network reconstruction from resting-state functional MRI, evaluating the effect of brain parcellation, connectivity definition, and global signal regression. Our criteria seek pipelines that minimise motion confounds and spurious test-retest discrepancies of network topology, while being sensitive to both inter-subject differences and experimental effects of interest. We reveal vast and systematic variability across pipelines' suitability for functional connectomics. Inappropriate choice of data-processing pipeline can produce results that are not only misleading, but systematically so, with the majority of pipelines failing at least one criterion. However, a set of optimal pipelines consistently satisfy all criteria across different datasets, spanning minutes, weeks, and months. We provide a full breakdown of each pipeline's performance across criteria and datasets, to inform future best practices in functional connectomics.


Asunto(s)
Encéfalo , Conectoma , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Conectoma/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Adulto , Femenino , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Mapeo Encefálico/métodos , Adulto Joven
12.
Commun Biol ; 6(1): 117, 2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36709401

RESUMEN

A central question in neuroscience is how consciousness arises from the dynamic interplay of brain structure and function. Here we decompose functional MRI signals from pathological and pharmacologically-induced perturbations of consciousness into distributed patterns of structure-function dependence across scales: the harmonic modes of the human structural connectome. We show that structure-function coupling is a generalisable indicator of consciousness that is under bi-directional neuromodulatory control. We find increased structure-function coupling across scales during loss of consciousness, whether due to anaesthesia or brain injury, capable of discriminating between behaviourally indistinguishable sub-categories of brain-injured patients, tracking the presence of covert consciousness. The opposite harmonic signature characterises the altered state induced by LSD or ketamine, reflecting psychedelic-induced decoupling of brain function from structure and correlating with physiological and subjective scores. Overall, connectome harmonic decomposition reveals how neuromodulation and the network architecture of the human connectome jointly shape consciousness and distributed functional activation across scales.


Asunto(s)
Conectoma , Alucinógenos , Humanos , Estado de Conciencia/fisiología , Encéfalo/fisiología , Alucinógenos/farmacología , Imagen por Resonancia Magnética
13.
Sci Adv ; 9(24): eadf8332, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37315149

RESUMEN

To understand how pharmacological interventions can exert their powerful effects on brain function, we need to understand how they engage the brain's rich neurotransmitter landscape. Here, we bridge microscale molecular chemoarchitecture and pharmacologically induced macroscale functional reorganization, by relating the regional distribution of 19 neurotransmitter receptors and transporters obtained from positron emission tomography, and the regional changes in functional magnetic resonance imaging connectivity induced by 10 different mind-altering drugs: propofol, sevoflurane, ketamine, lysergic acid diethylamide (LSD), psilocybin, N,N-Dimethyltryptamine (DMT), ayahuasca, 3,4-methylenedioxymethamphetamine (MDMA), modafinil, and methylphenidate. Our results reveal a many-to-many mapping between psychoactive drugs' effects on brain function and multiple neurotransmitter systems. The effects of both anesthetics and psychedelics on brain function are organized along hierarchical gradients of brain structure and function. Last, we show that regional co-susceptibility to pharmacological interventions recapitulates co-susceptibility to disorder-induced structural alterations. Collectively, these results highlight rich statistical patterns relating molecular chemoarchitecture and drug-induced reorganization of the brain's functional architecture.


Asunto(s)
Ketamina , Metilfenidato , Humanos , Encéfalo , Proteínas de Transporte de Membrana , Modafinilo
14.
Brain ; 134(Pt 3): 759-68, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21310727

RESUMEN

Cognitive dysfunction is a devastating consequence of traumatic brain injury that affects the majority of those who survive with moderate-to-severe injury, and many patients with mild head injury. Disruption of key monoaminergic neurotransmitter systems, such as the dopaminergic system, may play a key role in the widespread cognitive dysfunction seen after traumatic axonal injury. Manifestations of injury to this system may include impaired decision-making and impulsivity. We used the Cambridge Gambling Task to characterize decision-making and risk-taking behaviour, outside of a learning context, in a cohort of 44 patients at least six months post-traumatic brain injury. These patients were found to have broadly intact processing of risk adjustment and probability judgement, and to bet similar amounts to controls. However, a patient preference for consistently early bets indicated a higher level of impulsiveness. These behavioural measures were compared with imaging findings on diffusion tensor magnetic resonance imaging. Performance in specific domains of the Cambridge Gambling Task correlated inversely and specifically with the severity of diffusion tensor imaging abnormalities in regions that have been implicated in these cognitive processes. Thus, impulsivity was associated with increased apparent diffusion coefficient bilaterally in the orbitofrontal gyrus, insula and caudate; abnormal risk adjustment with increased apparent diffusion coefficient in the right thalamus and dorsal striatum and left caudate; and impaired performance on rational choice with increased apparent diffusion coefficient in the bilateral dorsolateral prefrontal cortices, and the superior frontal gyri, right ventrolateral prefrontal cortex, the dorsal and ventral striatum, and left hippocampus. Importantly, performance in specific cognitive domains of the task did not correlate with diffusion tensor imaging abnormalities in areas not implicated in their performance. The ability to dissociate the location and extent of damage with performance on the various task components using diffusion tensor imaging allows important insights into the neuroanatomical basis of impulsivity following traumatic brain injury. The ability to detect such damage in vivo may have important implications for patient management, patient selection for trials, and to help understand complex neurocognitive pathways.


Asunto(s)
Lesiones Encefálicas/complicaciones , Mapeo Encefálico , Encéfalo/patología , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/patología , Toma de Decisiones/fisiología , Adulto , Encéfalo/fisiopatología , Imagen de Difusión por Resonancia Magnética/métodos , Femenino , Juego de Azar , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Juicio/fisiología , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Estadística como Asunto
15.
Neuroimage Rep ; 2(4): None, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36507071

RESUMEN

Background: The growth in multi-center neuroimaging studies generated a need for methods that mitigate the differences in hardware and acquisition protocols across sites i.e., scanner effects. ComBat harmonization methods have shown promise but have not yet been tested on all the data types commonly studied with magnetic resonance imaging (MRI). This study aimed to validate neuroCombat, longCombat and gamCombat on both structural and diffusion metrics in both cross-sectional and longitudinal data. Methods: We used a travelling subject design whereby 73 healthy volunteers contributed 161 scans across two sites and four machines using one T1 and five diffusion MRI protocols. Scanner was defined as a composite of site, machine and protocol. A common pipeline extracted two structural metrics (volumes and cortical thickness) and two diffusion tensor imaging metrics (mean diffusivity and fractional anisotropy) for seven regions of interest including gray and (except for cortical thickness) white matter regions. Results: Structural data exhibited no significant scanner effect and therefore did not benefit from harmonization in our particular cohort. Indeed, attempting harmonization obscured the true biological effect for some regions of interest. Diffusion data contained marked scanner effects and was successfully harmonized by all methods, resulting in smaller scanner effects and better detection of true biological effects. LongCombat less effectively reduced the scanner effect for cross-sectional white matter data but had a slightly lower probability of incorrectly finding group differences in simulations, compared to neuroCombat and gamCombat. False positive rates for all methods and all metrics did not significantly exceed 5%. Conclusions: Statistical harmonization of structural data is not always necessary and harmonization in the absence of a scanner effect may be harmful. Harmonization of diffusion MRI data is highly recommended with neuroCombat, longCombat and gamCombat performing well in cross-sectional and longitudinal settings.

16.
Neuroimage Clin ; 36: 103253, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36451358

RESUMEN

Human coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has multiple neurological consequences, but its long-term effect on brain health is still uncertain. The cerebrovascular consequences of COVID-19 may also affect brain health. We studied the chronic effect of COVID-19 on cerebrovascular health, in relation to acute severity, adverse clinical outcomes and in contrast to control group data. Here we assess cerebrovascular health in 45 patients six months after hospitalisation for acute COVID-19 using the resting state fluctuation amplitudes (RSFA) from functional magnetic resonance imaging, in relation to disease severity and in contrast with 42 controls. Acute COVID-19 severity was indexed by COVID-19 WHO Progression Scale, inflammatory and coagulatory biomarkers. Chronic widespread changes in frontoparietal RSFA were related to the severity of the acute COVID-19 episode. This relationship was not explained by chronic cardiorespiratory dysfunction, age, or sex. The level of cerebrovascular dysfunction was associated with cognitive, mental, and physical health at follow-up. The principal findings were consistent across univariate and multivariate approaches. The results indicate chronic cerebrovascular impairment following severe acute COVID-19, with the potential for long-term consequences on cognitive function and mental wellbeing.


Asunto(s)
COVID-19 , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Estudios Prospectivos , Encéfalo , Imagen por Resonancia Magnética
17.
J Neurol ; 267(11): 3223-3234, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32535683

RESUMEN

BACKGROUND: An improved understanding of the trajectory of recovery after mild traumatic brain injury is important to be able to understand individual patient outcomes, for longitudinal patient care and to aid the design of clinical trials. OBJECTIVE: To explore changes in health, well-being and cognition over the 2 years following mTBI using latent growth curve (LGC) modelling. METHODS: Sixty-one adults with mTBI presenting to a UK Major Trauma Centre completed comprehensive longitudinal assessment at up to five time points after injury: 2 weeks, 3 months, 6 months, 1 year and 2 years. RESULTS: Persisting problems were seen with neurological symptoms, cognitive issues and poor quality of life measures including 28% reporting incomplete recovery on the Glasgow Outcome Score Extended at 2 years. Harmful drinking, depression, psychological distress, disability, episodic memory and working memory did not improve significantly over the 2 years following injury. For other measures, including the Rivermead Post-Concussion Symptoms and Quality of Life after Brain Injury (QOLIBRI), LGC analysis revealed significant improvement over time with recovery tending to plateau at 3-6 months. INTERPRETATION: Significant impairment may persist as late as 2 years after mTBI despite some recovery over time. Longitudinal analyses which make use of all available data indicate that recovery from mTBI occurs over a longer timescale than is commonly believed. These findings point to the need for long-term management of mTBI targeting individuals with persisting impairment.


Asunto(s)
Conmoción Encefálica , Lesiones Encefálicas , Personas con Discapacidad , Adulto , Humanos , Calidad de Vida
18.
Brain Connect ; 8(4): 245-253, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29366339

RESUMEN

The default mode network (DMN) is typically associated with off-task internal mentation, or with goal-oriented tasks that require self-referential processing such as autobiographical planning. However, recent reports suggest a broader involvement of the DMN in higher cognition. In line with this view, we report global connectivity changes that are centered on the main DMN hubs of precuneus and posterior cingulate cortex during a functional magnetic resonance imaging-based visuospatial version of the Tower of London planning task. Importantly, functional connectivity of these regions with the left caudate shows a significant relationship with faster reaction time to correct responses only during the high-demand planning condition, thus offering further evidence for the DMN's engagement during visuospatial planning. The results of this study not only provide robust evidence against the widely held notion of DMN disengagement during goal-oriented, attention-demanding, externally directed tasks but also support its involvement in a broader cognitive context with a memory-related role that extends beyond self-referential, internally directed mentation.


Asunto(s)
Mapeo Encefálico , Encéfalo/fisiología , Procesos Mentales/fisiología , Modelos Neurológicos , Vías Nerviosas/fisiología , Adulto , Encéfalo/irrigación sanguínea , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Oxígeno/sangre
19.
Front Behav Neurosci ; 11: 58, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28424597

RESUMEN

Traumatic brain injury (TBI) often results in cognitive impairments for patients. The aim of this proof of concept study was to establish the nature of abnormalities, in terms of activity and connectivity, in the working memory network of TBI patients and how these relate to compromised behavioral outcomes. Further, this study examined the neural correlates of working memory improvement following the administration of methylphenidate. We report behavioral, functional and structural MRI data from a group of 15 Healthy Controls (HC) and a group of 15 TBI patients, acquired during the execution of the N-back task. The patients were studied on two occasions after the administration of either placebo or 30 mg of methylphenidate. Between group tests revealed a significant difference in performance when HCs were compared to TBI patients on placebo [F(1, 28) = 4.426, p < 0.05, η p2 = 0.136]. This difference disappeared when the patients took methylphenidate [F(1, 28) = 3.665, p = 0.66]. Patients in the middle range of baseline performance demonstrated the most benefit from methylphenidate. Changes in the TBI patient activation levels in the Left Cerebellum significantly and positively correlated with changes in performance (r = 0.509, df = 13, p = 0.05). Whole-brain connectivity analysis using the Left Cerebellum as a seed revealed widespread negative interactions between the Left Cerebellum and parietal and frontal cortices as well as subcortical areas. Neither the TBI group on methylphenidate nor the HC group demonstrated any significant negative interactions. Our findings indicate that (a) TBI significantly reduces the levels of activation and connectivity strength between key areas of the working memory network and (b) Methylphenidate improves the cognitive outcomes on a working memory task. Therefore, we conclude that methylphenidate may render the working memory network in a TBI group more consistent with that of an intact working memory network.

20.
Eur Neuropsychopharmacol ; 27(2): 159-169, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28012706

RESUMEN

Despite evidence for beneficial use of methylphenidate in response inhibition, no studies so far have investigated the effects of this drug in the neurobiology of inhibitory control in traumatic brain injury (TBI), even though impulsive behaviours are frequently reported in this patient group. We investigated the neural basis of response inhibition in a group of TBI patients using functional magnetic resonance imaging and a stop-signal paradigm. In a randomised double-blinded crossover study, the patients received either a single 30mg dose of methylphenidate or placebo and performed the stop-signal task. Activation in the right inferior frontal gyrus (RIFG), an area associated with response inhibition, was significantly lower in patients compared to healthy controls. Poor response inhibition in this group was associated with greater connectivity between the RIFG and a set of regions considered to be part of the default mode network (DMN), a finding that suggests the interplay between DMN and frontal executive networks maybe compromised. A single dose of methylphenidate rendered activity and connectivity profiles of the patients RIFG near normal. The results of this study indicate that the neural circuitry involved in response inhibition in TBI patients may be partially restored with methylphenidate. Given the known mechanisms of action of methylphenidate, the effect we observed may be due to increased dopamine and noradrenaline levels.


Asunto(s)
Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/fisiopatología , Encéfalo/fisiopatología , Estimulantes del Sistema Nervioso Central/farmacología , Inhibición Psicológica , Metilfenidato/uso terapéutico , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Estudios Cruzados , Método Doble Ciego , Función Ejecutiva/efectos de los fármacos , Función Ejecutiva/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA