Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Insect Sci ; 20(5)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32986838

RESUMEN

We introduce a method to quantify flight ability and physical fitness of individual fruit flies which we term 'Flight Burst Duration' (FBD). This consisted of tethering individual insects by the dorsal thorax using a vacuum and measuring the length of time the insect beats its wings while suspended off a surface. Consecutive measurements with Bactrocera dorsalis Hendel (Dipera: Tephritidae) and Zeugodacus cucurbitae Coquillett (Diptera: Tephritidae) in the same day and across days indicated that a single measurement was sufficient, and that FBD was consistent and repeatable. Insects under stress from starvation displayed shorter FBD over time, and we suggest that the measure also relates to the physical condition or survival fitness of the individual. Though somewhat laborious and time-consuming, we propose that FBD can be useful for research studies requiring individual-level phenome data and for obtaining estimates quality and dispersive movement for insects.


Asunto(s)
Vuelo Animal/fisiología , Tephritidae/fisiología , Animales , Femenino , Masculino , Aptitud Física , Especificidad de la Especie
2.
J Chem Ecol ; 42(2): 156-62, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26922349

RESUMEN

Queensland fruit fly, Bactrocera tryoni (Q-fly), is a major pest of horticultural crops in eastern Australia. Lures that attract male Q-fly are important for detection of incursions and outbreaks, monitoring of populations, and control by mass trapping and male annihilation. Cuelure, an analog of naturally occurring raspberry ketone, is the standard Q-fly lure, but it has limited efficacy compared with lures that are available for some other fruit flies such as methyl eugenol for B. dorsalis. Melolure is a more recently developed raspberry ketone analog that has shown better attraction than cuelure in some field studies but not in others. A novel fluorinated analog of raspberry ketone, raspberry ketone trifluoroacetate (RKTA), has been developed as a potential improvement on cuelure and melolure. RKTA placed on laboratory cages containing 2-week-old Q-flies elicited strong behavioral responses from males. Quantification of Q-fly responses in these cages, using digital images to estimate numbers of flies aggregated near different lures, showed RKTA attracted and arrested significantly more flies than did cuelure or melolure. RKTA shows good potential as a new lure for improved surveillance and control of Q-fly.


Asunto(s)
Butanonas/metabolismo , Tephritidae/fisiología , Ácido Trifluoroacético/metabolismo , Animales , Conducta Animal , Femenino , Espectroscopía de Resonancia Magnética , Masculino , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
3.
BMC Genomics ; 15: 942, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25348373

RESUMEN

BACKGROUND: The oriental fruit fly, Bactrocera dorsalis, is an important pest of fruit and vegetable crops throughout Asia, and is considered a high risk pest for establishment in the mainland United States. It is a member of the family Tephritidae, which are the most agriculturally important family of flies, and can be considered an out-group to well-studied members of the family Drosophilidae. Despite their importance as pests and their relatedness to Drosophila, little information is present on B. dorsalis transcripts and proteins. The objective of this paper is to comprehensively characterize the transcripts present throughout the life history of B. dorsalis and functionally annotate and analyse these transcripts relative to the presence, expression, and function of orthologous sequences present in Drosophila melanogaster. RESULTS: We present a detailed transcriptome assembly of B. dorsalis from egg through adult stages containing 20,666 transcripts across 10,799 unigene components. Utilizing data available through Flybase and the modENCODE project, we compared expression patterns of these transcripts to putative orthologs in D. melanogaster in terms of timing, abundance, and function. In addition, temporal expression patterns in B. dorsalis were characterized between stages, to establish the constitutive or stage-specific expression patterns of particular transcripts. A fully annotated transcriptome assembly is made available through NCBI, in addition to corresponding expression data. CONCLUSIONS: Through characterizing the transcriptome of B. dorsalis through its life history and comparing the transcriptome of B. dorsalis to the model organism D. melanogaster, a database has been developed that can be used as the foundation to functional genomic research in Bactrocera flies and help identify orthologous genes between B. dorsalis and D. melanogaster. This data provides the foundation for future functional genomic research that will focus on improving our understanding of the physiology and biology of this species at the molecular level. This knowledge can also be applied towards developing improved methods for control, survey, and eradication of this important pest.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Tephritidae/crecimiento & desarrollo , Transcriptoma , Animales , Bases de Datos Genéticas , Drosophila melanogaster/genética , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genoma de los Insectos , Masculino , Análisis de Secuencia de ARN , Tephritidae/genética
4.
J Econ Entomol ; 117(3): 963-972, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38577920

RESUMEN

A major challenge to area-wide management of coffee berry borer (Hypothenemus hampei Ferrari) (Coleoptera: Scolytidae) is understanding how a heterogeneous coffee-growing landscape affects coffee berry borer population dynamics across temporal and spatial scales. We examined coffee phenology, weather, coffee berry borer flight activity, infestation, coffee berry borer position within the fruit, and management across 14 commercial coffee farms from 2016 to 2018 on Hawaii Island to characterize variation among districts and elevations. Here we aim to determine whether the timing of pesticide applications might be optimized based on specific locations. We observed larger populations of coffee berry borer at low-elevation farms and in the Kona district compared to mid- and high-elevation farms and the Ka'u district. Temperature, relative humidity, and rainfall all differed significantly across districts and elevations. We also observed a trend of higher fruit production at low-elevation farms compared to high-elevation farms, and differences in the timing of fruit development. Infestation increased with higher pest pressure and air temperatures and reduced fruit availability early and late in the season. Lastly, the timing and number of management interventions varied among districts and elevations. Combining information on trap catch, infestation, coffee berry borer position, and plant phenology, we present an optimized pesticide spray schedule for each location and find that the number of sprays could be reduced by 33-75% in comparison to the existing integrated pest management recommendations while maintaining effective control. Implementing a coordinated area-wide approach refined by small-scale optimization will lead to improved management of coffee berry borer on individual farms and a reduction in pest pressure across the coffee-growing landscape.


Asunto(s)
Coffea , Control de Insectos , Dinámica Poblacional , Animales , Hawaii , Control de Insectos/métodos , Coffea/crecimiento & desarrollo , Gorgojos/fisiología , Insecticidas/farmacología , Estaciones del Año , Escarabajos/fisiología
5.
J Econ Entomol ; 117(1): 8-23, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38141199

RESUMEN

Many countries conduct fruit fly surveillance but, while there are guidelines, practices vary widely. This review of some countries in the Pacific region demonstrates the diversity of fruit fly surveillance practices. All utilize 3 parapheromones-trimedlure, cuelure, and methyl eugenol-to trap adult male fruit flies. Some target species are not attracted to these compounds so other attractants such as food-based lures are used in certain areas or circumstances. Lure loading and replacement cycles depend on the target species and the local climate. Malathion and dichlorvos (DDVP) are commonly used toxicants, but not in all countries, and other toxicants are being developed to replace these older-generation pesticides. Jackson and Lynfield are commonly used trap designs but newer designs such as cone and Biotrap are being adopted. Local factors such as chemical registrations and climate affect the choice of trap, lure, dispenser, toxicant, and bait concentration. These choices affect the efficacy of traps, in turn influencing optimal trap deployment in space and time. Most states now follow similar practices around trap inspection, servicing, and data handling, but these processes will be disrupted by emerging automated trap technologies. Ultimately, different practices can be attributed to the unique fruit fly risk profiles faced by each state, particularly the suite of fruit flies already present and those that threaten from nearby. Despite the diversity of approaches, international trade in fruit continues with the assurance that fruit fly surveillance practices evolve and improve according to each country's risk profile and incursion experience.


Asunto(s)
Artrópodos , Tephritidae , Estados Unidos , Masculino , Animales , Control de Insectos , Nueva Zelanda , Comercio , Feromonas/farmacología , Internacionalidad , Australia , Drosophila , Diclorvos
6.
PLoS One ; 19(3): e0300866, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512951

RESUMEN

The Male Annihilation Technique (also termed the Male Attraction Technique; "MAT") is often used to eradicate pestiferous tephritid fruit flies, such as Bactrocera dorsalis (Hendel). MAT involves the application of male-specific attractants combined with an insecticide in spots or stations across an area to reduce the male population to such a low level that suppression or eradication is achieved. Currently, implementations of MAT in California and Florida targeting B. dorsalis utilize the male attractant methyl eugenol (ME) accompanied with a toxicant, such as spinosad, mixed into a waxy, inert emulsion STATIC ME (termed here "SPLAT-MAT-ME"). While highly effective against ME-responding species, such applications are expensive owing largely to the high cost of the carrier matrix and labor for application. Until recently the accepted protocol called for the application of approximately 230 SPLAT-MAT-ME spots per km2; however, findings from Hawaii suggest a lower density may be more effective. The present study adopted the methods of that earlier work and estimated kill rates of released B. dorsalis under varying spot densities in areas of California and Florida that have had recent incursions of this invasive species. Specifically, we directly compared trap captures of sterilized marked B. dorsalis males released in different plots under three experimental SPLAT-MAT-ME densities (50, 110, and 230 per km2) in Huntington Beach, CA; Anaheim, CA; and Sarasota-Bradenton, FL. The plots with a density of 110 sites per km2 had a significantly higher recapture proportion than plots with 50 or 230 sites per km2. This result suggests that large amounts of male attractant may reduce the ability of males to locate the source of the odor, thus lowering kill rates and the effectiveness of eradication efforts. Eradication programs would directly benefit from reduced costs and improved eradication effectiveness by reducing the application density of SPLAT-MAT-ME.


Asunto(s)
Eugenol/análogos & derivados , Insecticidas , Tephritidae , Animales , Masculino , Control de Insectos/métodos , Insecticidas/farmacología , Drosophila
7.
Sci Rep ; 14(1): 17521, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080311

RESUMEN

Determining movement parameters for pest insects such as tephritid fruit flies is critical to developing models which can be used to increase the effectiveness of surveillance and control strategies. In this study, harmonic radar was used to track wild-caught male Queensland fruit flies (Qflies), Bactrocera tryoni, in papaya fields. Experiment 1 continuously tracked single flies which were prodded to induce movement. Qfly movements from this experiment showed greater mean squared displacement than predicted by both a simple random walk (RW) or a correlated random walk (CRW) model, suggesting that movement parameters derived from the entire data set do not adequately describe the movement of individual Qfly at all spatial scales or for all behavioral states. This conclusion is supported by both fractal and hidden Markov model (HMM) analysis. Lower fractal dimensions (straighter movement paths) were observed at larger spatial scales (> 2.5 m) suggesting that Qflies have qualitatively distinct movement at different scales. Further, a two-state HMM fit the observed movement data better than the CRW or RW models. Experiment 2 identified individual landing locations, twice a day, for groups of released Qflies, demonstrating that flies could be tracked over longer periods of time.


Asunto(s)
Carica , Movimiento , Tephritidae , Animales , Tephritidae/fisiología , Masculino , Movimiento/fisiología , Radar
8.
J Med Entomol ; 50(3): 552-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23802449

RESUMEN

An important element of mating in the malaria vector Anopheles gambiae Giles in nature is the crepuscular mating aggregation (swarm) composed almost entirely of males, where most coupling and insemination is generally believed to occur. In this study, we mathematically characterize the oscillatory movement of male An. gambiae in terms of an established individual-based mechanistic model that parameterizes the attraction of a mosquito toward the center of the swarm using the natural frequency of oscillation and the resistance to its motion, characterized by the damping ratio. Using three-dimensional trajectory data of ten wild mosquito swarms filmed in Mali, Africa, we show two new results for low and moderate wind conditions, and indicate how these results may vary in high wind. First, we show that in low and moderate wind the vertical component of the mosquito motion has a lower frequency of oscillation and higher damping ratio than horizontal motion. In high wind, the vertical and horizontal motions are similar to one another and the natural frequencies are higher than in low and moderate wind. Second, we show that the predicted average disagreement in the direction of motion of swarming mosquitoes moving randomly is greater than the average disagreement we observed between each mosquito and its three closest neighbors, with the smallest level of disagreement occurring for the nearest neighbor in seven out of 10 swarms. The alignment of the direction of motion between nearest neighbors is the highest in high wind. This result provides evidence for flight-path coordination between swarming male mosquitoes.


Asunto(s)
Anopheles/fisiología , Conducta Sexual Animal , Animales , Masculino , Malí , Actividad Motora , Viento
9.
J Econ Entomol ; 116(3): 1002-1016, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37118992

RESUMEN

Typical delimitation trapping survey designs for area-wide (nonlocalized) insect populations are regularly spaced grids, and alternative shapes have not been evaluated. We hypothesized that transect-based designs could give similar detection rates with significantly shorter servicing distances. We used the TrapGrid model to investigate novel "trap-sect" designs incorporating crossed, spoked, and parallel lines of traps, comparing them to a regular grid, in single survey and multiple-site scenarios. We calculated minimum servicing distances and simulated mean probabilities of detecting a pest population, judging overall performance of trap network designs using both metrics. For single sites, trap-sect designs reduced service distances by 65-89%, and most had similar detection probabilities as the regular grid. Kernel-smoothed intensity plots indicated that the best performing trap-sect designs distributed traps more fully across the area. With multiple sites (3 side by side), results depended on insect dispersal ability. All designs performed similarly in terms of detection for highly mobile insects, suggesting that designs minimizing service distances would be best for such pests. For less mobile pests the best trap-sect designs had 4-6 parallel lines, or 8 spokes, which reduced servicing distances by 33-50%. Comparisons of hypothetical trap-sect arrays to real program trap locations for 2 pests demonstrated that the novel designs reduced both trap numbers and service distances, with little differences in mean nearest trap distance to random pest locations. Trap-sect designs in delimitation surveys could reduce costs and increase program flexibility without harming the ability to detect populations.


Asunto(s)
Control de Insectos , Mariposas Nocturnas , Animales , Control de Insectos/métodos , Insectos
10.
Sci Rep ; 13(1): 22559, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110589

RESUMEN

The olive fruit fly Bactrocera oleae (Diptera: Tephritidae) was detected on Maui and Hawai'i Islands in 2019, affecting yields and quality of the state's emerging olive oil industry. Given previous parasitoid releases to control other invasive frugivorous tephritids in Hawai'i, we were interested in determining whether these parasitoids were naturally targeting recent olive fly invaders in field, if local olive cultivar differences affected parasitization rates, and if there was a seasonal pattern of parasitization that could inform future management decisions. To address these questions, we collected data from olive growing in Hawai'i during 2021 and 2022. During the fruiting season we collected monthly samples and reared out B. oleae in the lab. We detected two previously introduced braconid wasps: first Diachasmimorpha tryoni during 2021 and 2022 and later Fopius arisanus during the 2022 collection. Cultivar effects were limited to a single site in our study, where more D. tryoni were reared from 'Arbequina' olives. Seasonality of olive fruit fly and parasitoid activity was earlier in lower elevation sites, as expected based on tree phenology and temperature-dependent insect development. This represents the first report of D. tryoni parasitism activity against B. oleae and may reflect elevational effects combined with the ecological complexity in interactions between multiple invasive arthropod pests, their invasive and cultivated plant hosts, and introduced braconid parasitoids.


Asunto(s)
Olea , Tephritidae , Avispas , Animales , Hawaii , Drosophila
11.
J Econ Entomol ; 116(4): 1296-1306, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37312603

RESUMEN

Pest insect surveillance using lures is widely used to support market access requirements for traded articles that are hosts or carriers of quarantine pests. Modeling has been used extensively to guide the design of surveillance to support pest free area claims but is less commonly applied to provide confidence in pest freedom or low pest prevalence within sites registered for trade. Site-based surveillance typically needs to detect pests that are already present in the site or that may be entering the site from surrounding areas. We assessed the ability of site-based surveillance strategies to detect pests originating from within or outside the registered site using a probabilistic trapping network simulation model with random-walk insect movement and biologically realistic parameters. For a given release size, time-dependent detection probability was primarily determined by trap density and lure attractiveness, whereas mean step size (daily dispersal) had limited effect. Results were robust to site shape and size. For pests already within the site, detection was most sensitive using regularly spaced traps. Perimeter traps performed best for detecting pests moving into the site, although the importance of trap arrangement decreased with time from release, and random trap placement performed relatively well compared to regularly spaced traps. High detection probabilities were achievable within 7 days using realistic values for lure attractiveness and trap density. These findings, together with the modeling approach, can guide the development of internationally agreed principles for designing site-based surveillance of lure-attractant pests that is calibrated against the risk of non-detection.


Asunto(s)
Control de Insectos , Mariposas Nocturnas , Animales , Control de Insectos/métodos , Modelos Estadísticos , Feromonas
12.
J Econ Entomol ; 115(3): 799-807, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35446410

RESUMEN

The oriental fruit fly, Bactrocera dorsalis (Hendel), is a global pest that infests a range of fruit and vegetables. Males are attracted to methyl eugenol, and control is often achieved by the Male Annihilation Technique, where methyl eugenol + insecticide dispensers are deployed to eliminate males, preclude matings, and reduce population growth. The Sterile Insect Technique (SIT) has also been used to control B. dorsalis. The SIT involves the release of mass-reared, sterilized males to achieve matings with wild females, who then produce inviable eggs. Two key elements of SIT include the overflooding ratio achieved (sterile: wild males) and the strain type utilized, namely bisexual or genetically sexed (allowing male-only releases). Here, we describe the effects of these two factors on the mating competitiveness of a males from a genetic sexing strain of B. dorsalis, termed DTWP. Mating success was scored for DTWP versus wild males in field cages at ratios of 1:2, 1:1, 2:1, and 10:1 both when DTWP females were or were not concurrently released with DTWP males. Close correspondence was found between observed numbers of matings of particular male-female combinations and expected numbers based on the numbers of flies released of each sex and each strain. As a result, the proportion of total matings achieved by the DTWP across the eight treatments showed a corresponding increase with overflooding ratio. At a given ratio, DTWP males had a higher relative mating success when DTWP females were absent rather than present, although the reason for this was unclear.


Asunto(s)
Tephritidae , Animales , Drosophila , Femenino , Masculino , Control Biológico de Vectores/métodos , Reproducción , Conducta Sexual Animal , Tephritidae/genética
13.
Sci Rep ; 12(1): 11089, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773305

RESUMEN

In the United States of America, delimitation trapping surveys with square grids have been used for decades for exotic insects without rigorous evaluation. We used simulations to investigate the effectiveness of two representative designs: an 8-km grid for Acrolepiopsis assectella (leek moth) and a 14.5-km grid for Ceratitis capitata (Mediterranean fruit fly, "Medfly"). We investigated grid compositions and design factors, measuring performance as the mean probability of pest capture over all traps, p(capture), and designed improved grids for both species. For the standard designs, p(capture) was 0.86 for leek moth and 0.71 for Medfly, with the latter performing better due to greater lure and trap attractiveness. For both designs, 86 percent or more of mean p(capture) came from core area captures. Egress testing indicated that both grids were oversized. An improved grid for leek moths would use 177 traps in a 4.8-km diameter circle, which had mean p(capture) = 0.73 and reduced the cost by 80 percent. The best Medfly grid was a 4.8-km diameter circle with 232 traps, which gave mean p(capture) of 0.66 and reduced the cost by 86 percent. Simulation may be used to improve trapping survey plans, often saving significantly on costs while maintaining survey performance.


Asunto(s)
Ceratitis capitata , Mariposas Nocturnas , Animales , Simulación por Computador , Sistemas de Computación , Control de Insectos
14.
J Econ Entomol ; 115(2): 556-564, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35296884

RESUMEN

Insect responses to chemical attractants are often measured using olfactory bioassays prior to testing in field experiments. The attraction of sexually mature male Bactrocera dorsalis to methyl eugenol (ME) and the loss of attraction by ME pre-fed males have been demonstrated in laboratory bioassays and field trapping studies. It has been suggested that ME nonresponsiveness can be exploited to improve the effectiveness of B. dorsalis management programs by protecting sterile males from ME-based control measures. Currently, work is underway to identify alternatives that reduce or eliminate ME response. To support the development of compounds and evaluation of their effect on B. dorsalis attraction to ME, we compared the effectiveness of three common bioassay methods that have been used to measure lure response in Bactrocera flies under controlled conditions (choice assays using Y-tube [Y], small-cage arena [SC], and rotating carousel field-cage [RC]) to determine which bioassay method is efficient and reliable. A series of bioassays comparing ME-exposed and ME-naïve wild-type and genetic sexing strain males showed that the RC and SC were effective at both observing attraction to ME and detecting a significant reduction in ME response from ME-exposed males. However, the male attraction to ME and a significant decrease in response to ME after ME feeding was not observed in our Y-tube assays. These suggest that RC and SC are preferable options to evaluate ME non-responsiveness in B. dorsalis, and that Y-tube tests are difficult to administer correctly.


Asunto(s)
Tephritidae , Animales , Bioensayo , Eugenol/análogos & derivados , Eugenol/farmacología , Masculino , Conducta Sexual Animal , Tephritidae/fisiología
15.
PLoS One ; 17(11): e0276987, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36383542

RESUMEN

Tephritid fruit flies, such as the melon fly, Zeugodacus cucurbitae, are major horticultural pests worldwide and pose invasion risks due primarily to international trade. Determining movement parameters for fruit flies is critical to effective surveillance and control strategies, from setting quarantine boundaries after incursions to development of agent-based models for management. While mark-release-recapture, flight mills, and visual observations have been used to study tephritid movement, none of these techniques give a full picture of fruit fly movement in nature. Tracking tagged flies offers an alternative method which has the potential to observe individual fly movements in the field, mirroring studies conducted by ecologists on larger animals. In this study, harmonic radar (HR) tags were fabricated using superelastic nitinol wire which is light (tags weighed less than 1 mg), flexible, and does not tangle. Flight tests with wild melon flies showed no obvious adverse effects of HR tag attachment. Subsequent experiments successfully tracked HR tagged flies in large field cages, a papaya field, and open parkland. Unexpectedly, a majority of tagged flies showed strong flight directional biases with these biases varying between flies, similar to what has been observed in the migratory butterfly Pieris brassicae. In field cage experiments, 30 of the 36 flies observed (83%) showed directionally biased flights while similar biases were observed in roughly half the flies tracked in a papaya field. Turning angles from both cage and field experiments were non-random and indicate a strong bias toward continued "forward" movement. At least some of the observed direction bias can be explained by wind direction with a correlation observed between collective melon fly flight directions in field cage, papaya field, and open field experiments. However, individual mean flight directions coincided with the observed wind direction for only 9 out of the 25 flies in the cage experiment and half of the flies in the papaya field, suggesting wind is unlikely to be the only factor affecting flight direction. Individual flight distances (meters per flight) differed between the field cage, papaya field, and open field experiments with longer mean step-distances observed in the open field. Data on flight directionality and step-distances determined in this study might assist in the development of more effective control and better parametrize models of pest tephritid fruit fly movement.


Asunto(s)
Carica , Cucurbitaceae , Tephritidae , Animales , Radar , Hawaii , Comercio , Internacionalidad , Verduras , Control de Insectos/métodos
16.
BMC Genomics ; 12: 136, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21362191

RESUMEN

BACKGROUND: Ticks--vectors of medical and veterinary importance--are themselves also significant pests. Tick salivary proteins are the result of adaptation to blood feeding and contain inhibitors of blood clotting, platelet aggregation, and angiogenesis, as well as vasodilators and immunomodulators. A previous analysis of the sialotranscriptome (from the Greek sialo, saliva) of Amblyomma variegatum is revisited in light of recent advances in tick sialomes and provides a database to perform a proteomic study. RESULTS: The clusterized data set has been expertly curated in light of recent reviews on tick salivary proteins, identifying many new families of tick-exclusive proteins. A proteome study using salivary gland homogenates identified 19 putative secreted proteins within a total of 211 matches. CONCLUSIONS: The annotated sialome of A. variegatum allows its comparison to other tick sialomes, helping to consolidate an emerging pattern in the salivary composition of metastriate ticks; novel protein families were also identified. Because most of these proteins have no known function, the task of functional analysis of these proteins and the discovery of novel pharmacologically active compounds becomes possible.


Asunto(s)
Perfilación de la Expresión Génica , Ixodidae/genética , Proteoma/genética , Proteínas y Péptidos Salivales/genética , Secuencia de Aminoácidos , Animales , Cromatografía Liquida , Biología Computacional , Bases de Datos de Proteínas , Femenino , Biblioteca de Genes , Datos de Secuencia Molecular , Espectrometría de Masas en Tándem
17.
Proc Natl Acad Sci U S A ; 105(8): 2940-5, 2008 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-18287019

RESUMEN

The role of chromosomal inversions in speciation has long been of interest to evolutionists. Recent quantitative modeling has stimulated reconsideration of previous conceptual models for chromosomal speciation. Anopheles gambiae, the most important vector of human malaria, carries abundant chromosomal inversion polymorphism nonrandomly associated with ecotypes that mate assortatively. Here, we consider the potential role of paracentric inversions in promoting speciation in A. gambiae via "ecotypification," a term that refers to differentiation arising from local adaptation. In particular, we focus on the Bamako form, an ecotype characterized by low inversion polymorphism and fixation of an inversion, 2Rj, that is very rare or absent in all other forms of A. gambiae. The Bamako form has a restricted distribution by the upper Niger River and its tributaries that is associated with a distinctive type of larval habitat, laterite rock pools, hypothesized to be its optimal breeding site. We first present computer simulations to investigate whether the population dynamics of A. gambiae are consistent with chromosomal speciation by ecotypification. The models are parameterized using field observations on the various forms of A. gambiae that exist in Mali, West Africa. We then report on the distribution of larvae of this species collected from rock pools and more characteristic breeding sites nearby. Both the simulations and field observations support the thesis that speciation by ecotypification is occurring, or has occurred, prompting consideration of Bamako as an independent species.


Asunto(s)
Adaptación Biológica/genética , Anopheles/genética , Inversión Cromosómica/genética , Especiación Genética , Polimorfismo Genético , Animales , Anopheles/clasificación , Anopheles/fisiología , Simulación por Computador , Larva/fisiología , Malí , Dinámica Poblacional
18.
PLoS One ; 16(12): e0257861, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34928953

RESUMEN

Coffee berry borer (CBB, Hypothenemus hampei Ferrari) is the most serious insect pest of coffee worldwide, yet little is known about the effect that weather variables have on CBB flight activity. We sampled flying female CBB adults bi-weekly over a three-year period using red funnel traps baited with an alcohol lure at 14 commercial coffee farms on Hawaii Island to characterize seasonal phenology and the relationship between flight activity and five weather variables. We captured almost 5 million scolytid beetles during the sampling period, with 81-93% of the trap catch comprised of CBB. Of the captured non-target beetles, the majority were tropical nut borer, black twig borer and a species of Cryphalus. Two major flight events were consistent across all three years: an initial emergence from January-April that coincided with early fruit development and a second flight during the harvest season from September-December. A generalized additive mixed model (GAMM) revealed that mean daily air temperature had a highly significant positive correlation with CBB flight; most flight events occurred between 20-26°C. Mean daily solar radiation also had a significant positive relationship with flight. Flight was positively correlated with maximum daily relative humidity at values below ~94%, and cumulative rainfall up to 100 mm; flight was also positively correlated with maximum daily wind speeds up to ~2.5 m/s, after which activity declined. Our findings provide important insight into CBB flight patterns across a highly variable landscape and can serve as a starting point for the development of flight prediction models.


Asunto(s)
Escarabajos/fisiología , Vuelo Animal/fisiología , Modelos Biológicos , Estaciones del Año , Animales , Femenino , Hawaii , Masculino
19.
J Econ Entomol ; 114(6): 2581-2590, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34633043

RESUMEN

Fully trapped survey designs are widely used to delimit adventive pests populations that can be detected using traps and lures. Delimitation includes verifying the presence of the pest and determining its spatial extent. The size and shape of the survey design and the density of traps can vary; however, resulting variation in detecting efficiency is often unknown. We used a trapping network simulation model with diffusion-based insect movement to investigate delimiting survey trapping design performance for fully trapped and some modified designs. Simulations included randomized outbreak locations in a core area and a duration of 30 d. We assessed impacts of insect dispersal ability, grid size and shape, and trap attractiveness and density on survey performance, measured as mean probability of capturing individual pests [p(capture)]. Most published grids are square, but circles performed equally well and are more efficient. Over different grid sizes, p(capture) increased for insects with greater dispersal ability but was generally unresponsive to size because most captures occurred in central areas. For low dispersing insects, the likelihood of egress was approximately zero with a 3.2-km square grid, whereas an 11.3-km grid was needed to contain highly vagile insects. Trap attractiveness affected p(capture) more strongly than density: lower densities of poorly attractive traps may underperform expectations. Variable density designs demonstrated potential for cost savings but highlighted that resource-intensive outer bands are critical to boundary determination. Results suggesting that many grids are oversized need empirical verification, whereas other principles, such as using circular shapes, are readily adoptable now.


Asunto(s)
Control de Insectos , Mariposas Nocturnas , Animales
20.
J R Soc Interface ; 18(177): 20210121, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33849333

RESUMEN

Given the unsurpassed sound sensitivity of mosquitoes among arthropods and the sound source power required for long-range hearing, we investigated the distance over which female mosquitoes detect species-specific cues in the sound of station-keeping mating swarms. A common misunderstanding, that mosquitoes cannot hear at long range because their hearing organs are 'particle-velocity' receptors, has clouded the fact that particle velocity is an intrinsic component of sound whatever the distance to the sound source. We exposed free-flying Anopheles coluzzii females to pre-recorded sounds of male An. coluzzii and An. gambiae s.s. swarms over a range of natural sound levels. Sound levels tested were related to equivalent distances between the female and the swarm for a given number of males, enabling us to infer distances over which females might hear large male swarms. We show that females do not respond to swarm sound up to 48 dB sound pressure level (SPL) and that louder SPLs are not ecologically relevant for a swarm. Considering that swarms are the only mosquito sound source that would be loud enough to be heard at long range, we conclude that inter-mosquito acoustic communication is restricted to close-range pair interactions. We also showed that the sensitivity to sound in free-flying males is much enhanced compared to that of tethered ones.


Asunto(s)
Anopheles , Conducta Sexual Animal , Acústica , Animales , Comunicación , Femenino , Masculino , Sonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA