Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proteins ; 91(3): 354-362, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36196751

RESUMEN

Cysteinyl-tRNA synthetase (CysRS) catalyzes the aminoacylation reaction of cysteine to its cognate tRNACys in the first step of protein translation. It is found that CysRS is different from other aaRSs as it transfers cysteine without the need for an editing reaction, which is not applicable in the case of serine despite the similarity in their structures. Surprisingly, the reasons why CysRS has high amino acid specificity are not clear yet. In this research, the binding configurations of Cys-AMP and its near-cognate amino acid Ser-AMP with CysRS are compared by Molecular Dynamics (MD). The results reveal that CysRS screens the substrate Cys-AMP to a certain extent in the process of combination and recognition, thus providing a guarantee for the high selectivity of the next reaction. While Ser-AMP is in a folded state in CysRS. In the meanwhile, the interaction between Cys-AMP and Zn963 in CysRS is much stronger than Ser-AMP. The substrate-assisted aminoacylation mechanism in CysRS is also explored by Quantum Mechanics/Molecular Mechanics (QM/MM) modeling. According to the QM/MM potential energies, the energy barrier of TSCys-AMP is 91.75 kJ/mol, while that of TSSer-AMP is close to 150 kJ/mol. Based on thermochemistry calculations, it is found that the product of Cys-AMP is more stable than the reactant. In contrast, Ser-AMP has a reactant that is more stable than its product. As a result, it reflects that the specificity of CysRS originates from both the kinetic and thermodynamical perspectives of the reaction. Our investigations demonstrate comprehensively on how CysRS recognizes and catalyzes the substrate Cys-AMP, hoping to provide some guidance for researchers in this area.


Asunto(s)
Aminoacil-ARNt Sintetasas , Simulación de Dinámica Molecular , Cisteína , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Aminoácidos/química , Especificidad por Sustrato
2.
Molecules ; 27(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36296373

RESUMEN

Human serum paraoxonase-1 (PON1) is an important hydrolase-type enzyme found in numerous tissues. Notably, it can exist in two isozyme-forms, Q and R, that exhibit different activities. This study presents an in silico (QSAR, Docking, MD and QM/MM) study of a set of compounds on the activity towards the PON1 isoenzymes (QPON1 and RPON1). Different rates of reaction for the Q and R isoenzymes were analyzed by modelling the effect of Q192R mutation on active sites. It was concluded that the Q192R mutation is not even close to the active site, while it is still changing the geometry of it. Using the combined genetic algorithm with multiple linear regression (GA-MLR) technique, several QSAR models were developed and relative activity rates of the isozymes of PON1 explained. From these, two QSAR models were selected, one each for the QPON1 and RPON1. Best selected models are four-variable MLR models for both Q and R isozymes with squared correlation coefficient R2 values of 0.87 and 0.83, respectively. In addition, the applicability domain of the models was analyzed based on the Williams plot. The results were discussed in the light of the main factors that influence the hydrolysis activity of the PON1 isozymes.


Asunto(s)
Arildialquilfosfatasa , Isoenzimas , Humanos , Arildialquilfosfatasa/genética , Hidrólisis , Isoenzimas/genética , Modelos Lineales , Análisis Multivariante
3.
ACS Omega ; 9(26): 28556-28563, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38973878

RESUMEN

Nonribosomal peptide synthetases (NRPSs) are important enzymes that synthesize an array of nongenetically encoded peptides. The latter have diverse physicochemical properties and roles. NRPSs are modular enzymes in which, for example, the condensation (C-) domain catalyzes the formation of amide bonds. The NRPS tyrocidine synthetase from Brevibacillus brevis is responsible for synthesizing the cyclic-peptide antibiotic tyrocidine. The first step is formation of an amide bond between a proline and phenylalanine which is catalyzed by a C-domain. In this study, a multiscale computational approach (molecular dynamics and QM/MM) has been used to investigate substrate binding and catalytic mechanism of the C-domain of tyrocidine synthetase. Overall, the mechanism is found to proceed through three exergonic steps in which an active site Histidine, His222, acts as a base and acid. First, His222 acts as a base to facilitate nucleophilic attack of the prolyl nitrogen at the phenylalanyl's carbonyl carbon. This is also the rate-limiting step with a free energy barrier of 38.8 kJ mol-1. The second step is collapse of the resulting tetrahedral intermediate with cleavage of the S-C bond between the phenylalanyl and its Ppant arm, along with formation of the above amide bond. Meanwhile, the now protonated His222 imidazole has rotated toward the newly formed thiolate of the Ppant arm. In the final step, His222 acts as an acid, protonating the thiolate and regenerating a neutral His222. The overall mechanism is found to be exergonic with the final product complex being 46.3 kJ mol-1 lower in energy than the initial reactant complex.

4.
J Int Soc Sports Nutr ; 13: 36, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27688737

RESUMEN

BACKGROUND: Recently, there has been an increased interest in the effects of essential oils on athletic performances and other physiological effects. This study aimed to assess the effects of Citrus sinensis flower and Mentha spicata leaves essential oils inhalation in two different groups of athlete male students on their exercise performance and lung function. METHODS: Twenty physical education students volunteered to participate in the study. The subjects were randomly assigned into two groups: Mentha spicata and Citrus sinensis (ten participants each). One group was nebulized by Citrus sinensis flower oil and the other by Mentha spicata leaves oil in a concentration of (0.02 ml/kg of body mass) which was mixed with 2 ml of normal saline for 5 min before a 1500 m running tests. Lung function tests were measured using a spirometer for each student pre and post nebulization giving the same running distance pre and post oils inhalation. RESULTS: A lung function tests showed an improvement on the lung status for the students after inhaling of the oils. Interestingly, there was a significant increase in Forced Expiratory Volume in the first second and Forced Vital Capacity after inhalation for the both oils. Moreover significant reductions in the means of the running time were observed among these two groups. The normal spirometry results were 50 %, while after inhalation with M. spicata oil the ratio were 60 %. CONCLUSION: Our findings support the effectiveness of M. spicata and C. sinensis essential oils on the exercise performance and respiratory function parameters. However, our conclusion and generalisability of our results should be interpreted with caution due to small sample size and lack of control groups, randomization or masking. We recommend further investigations to explain the mechanism of actions for these two essential oils on exercise performance and respiratory parameters. TRIAL REGISTRATION: ISRCTN10133422, Registered: May 3, 2016.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA