RESUMEN
Gain-of-function mutations in the EPAS1/HIF2A gene have been identified in patients with hereditary erythrocytosis that can be associated with the development of paraganglioma, pheochromocytoma and somatostatinoma. In the present study, we describe a unique European collection of 41 patients and 28 relatives diagnosed with an erythrocytosis associated with a germline genetic variant in EPAS1. In addition we identified two infants with severe erythrocytosis associated with a mosaic mutation present in less than 2% of the blood, one of whom later developed a paraganglioma. The aim of this study was to determine the causal role of these genetic variants, to establish pathogenicity, and to identify potential candidates eligible for the new hypoxia-inducible factor-2 α (HIF-2α) inhibitor treatment. Pathogenicity was predicted with in silico tools and the impact of 13 HIF-2b variants has been studied by using canonical and real-time reporter luciferase assays. These functional assays consisted of a novel edited vector containing an expanded region of the erythropoietin promoter combined with distal regulatory elements which substantially enhanced the HIF-2α-dependent induction. Altogether, our studies allowed the classification of 11 mutations as pathogenic in 17 patients and 23 relatives. We described four new mutations (D525G, L526F, G527K, A530S) close to the key proline P531, which broadens the spectrum of mutations involved in erythrocytosis. Notably, we identified patients with only erythrocytosis associated with germline mutations A530S and Y532C previously identified at somatic state in tumors, thereby raising the complexity of the genotype/phenotype correlations. Altogether, this study allows accurate clinical follow-up of patients and opens the possibility of benefiting from HIF-2α inhibitor treatment, so far the only targeted treatment in hypoxia-related erythrocytosis disease.
Asunto(s)
Paraganglioma , Policitemia , Humanos , Policitemia/diagnóstico , Policitemia/genética , Mutación , Paraganglioma/complicaciones , Paraganglioma/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , HipoxiaRESUMEN
Hereditary erythrocytosis is a rare hematologic disorder characterized by an excess of red blood cell production. Here we describe a European collaborative study involving a collection of 2,160 patients with erythrocytosis sequenced in ten different laboratories. We focused our study on the EGLN1 gene and identified 39 germline missense variants including one gene deletion in 47 probands. EGLN1 encodes the PHD2 prolyl 4-hydroxylase, a major inhibitor of hypoxia-inducible factor. We performed a comprehensive study to evaluate the causal role of the identified PHD2 variants: (i) in silico studies of localization, conservation, and deleterious effects; (ii) analysis of hematologic parameters of carriers identified in the UK Biobank; (iii) functional studies of the protein activity and stability; and (iv) a comprehensive study of PHD2 splicing. Altogether, these studies allowed the classification of 16 pathogenic or likely pathogenic mutants in a total of 48 patients and relatives. The in silico studies extended to the variants described in the literature showed that a minority of PHD2 variants can be classified as pathogenic (36/96), without any differences from the variants of unknown significance regarding the severity of the developed disease (hematologic parameters and complications). Here, we demonstrated the great value of federating laboratories working on such rare disorders in order to implement the criteria required for genetic classification, a strategy that should be extended to all hereditary hematologic diseases.
Asunto(s)
Policitemia , Humanos , Policitemia/diagnóstico , Policitemia/genética , Policitemia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Mutación de Línea Germinal , Secuencia de BasesRESUMEN
Idiopathic interstitial pneumonias (IIPs) comprise a heterogeneous group of rare lung parenchyma disorders with high morbidity and mortality, which can occur at all ages. In adults, the most common form of IIPs, idiopathic pulmonary fibrosis (IPF), has been associated with an increased frequency of lung cancer. The molecular basis of IIPs remains unknown in most cases. This study investigates IIP pathophysiology in 12 families affected by IPF and lung cancer. We identified, in a multigenerational family, nine members carrying a heterozygous missense mutation with evidence of pathogenicity in SFTPA1 that encodes the surfactant protein (SP)-A1. The mutation (p.Trp211Arg), which segregates with a disease phenotype characterized by either isolated IIP/IPF, or IPF associated with lung adenocarcinoma, is located in the carbohydrate recognition domain (CRD) of SP-A1 and involves a residue invariant throughout evolution, not only in SP-A1, but also in its close paralog SP-A2 and other CRD-containing proteins. As shown through functional studies, the p.Trp211Arg mutation impairs SP-A1 secretion. Immunohistochemistry studies on patient alveolar epithelium showed an altered SP-A expression pattern. Overall, this first report of a germline molecular defect in SFTPA1 unveils the key role of SP-A1 in the occurrence of several chronic respiratory diseases, ranging from severe respiratory insufficiency occurring early in life to the association of lung fibrosis and cancer in adult patients. These data also clearly show that, in spite of their structural and functional similarities, SP-A1 and SP-A2 are not redundant.
Asunto(s)
Mutación de Línea Germinal , Neumonías Intersticiales Idiopáticas/genética , Neoplasias Pulmonares/genética , Mutación Missense , Proteína A Asociada a Surfactante Pulmonar/genética , Adulto , Anciano , Femenino , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Neumonías Intersticiales Idiopáticas/patología , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Linaje , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Análisis de Secuencia de ADNRESUMEN
Severe iron overload is frequent in dehydrated hereditary stomatocytosis (DHSt) despite well-compensated hemolysis and no or little transfusion requirement. We investigated 4 patients with proven DHSt, in whom the degree of hemolysis was closely related to iron status. Genetic modifiers increasing iron stores (HFE:pCys282Tyr, HAMP:c-153C>T mutations) were accompanied with high liver iron concentrations and increased hemolysis, whereas therapeutic phlebotomies alleviated the hemolytic phenotype. There were no manifestations of hemolysis in one patient with low iron stores. Hemolysis reappeared when iron supplementation was given. The search for genetic or acquired modifiers of iron status and the modulation of iron stores may help in the management of these patients.
Asunto(s)
Anemia Hemolítica Congénita/diagnóstico , Anemia Hemolítica Congénita/metabolismo , Hidropesía Fetal/diagnóstico , Hidropesía Fetal/metabolismo , Hierro/metabolismo , Fenotipo , Adulto , Alelos , Anemia Hemolítica Congénita/sangre , Anemia Hemolítica Congénita/genética , Biomarcadores , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Proteína de la Hemocromatosis/genética , Humanos , Hidropesía Fetal/sangre , Hidropesía Fetal/genética , Masculino , Persona de Mediana Edad , Mutación , RadiografíaRESUMEN
Bartter syndrome type 3 is a clinically heterogeneous hereditary salt-losing tubulopathy caused by mutations of the chloride voltage-gated channel Kb gene (CLCNKB), which encodes the ClC-Kb chloride channel involved in NaCl reabsorption in the renal tubule. To study phenotype/genotype correlations, we performed genetic analyses by direct sequencing and multiplex ligation-dependent probe amplification and retrospectively analyzed medical charts for 115 patients with CLCNKB mutations. Functional analyses were performed in Xenopus laevis oocytes for eight missense and two nonsense mutations. We detected 60 mutations, including 27 previously unreported mutations. Among patients, 29.5% had a phenotype of ante/neonatal Bartter syndrome (polyhydramnios or diagnosis in the first month of life), 44.5% had classic Bartter syndrome (diagnosis during childhood, hypercalciuria, and/or polyuria), and 26.0% had Gitelman-like syndrome (fortuitous discovery of hypokalemia with hypomagnesemia and/or hypocalciuria in childhood or adulthood). Nine of the ten mutations expressed in vitro decreased or abolished chloride conductance. Severe (large deletions, frameshift, nonsense, and essential splicing) and missense mutations resulting in poor residual conductance were associated with younger age at diagnosis. Electrolyte supplements and indomethacin were used frequently to induce catch-up growth, with few adverse effects. After a median follow-up of 8 (range, 1-41) years in 77 patients, chronic renal failure was detected in 19 patients (25%): one required hemodialysis and four underwent renal transplant. In summary, we report a genotype/phenotype correlation for Bartter syndrome type 3: complete loss-of-function mutations associated with younger age at diagnosis, and CKD was observed in all phenotypes.
Asunto(s)
Síndrome de Bartter/diagnóstico , Síndrome de Bartter/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Masculino , Mutación , Estudios Retrospectivos , Adulto JovenAsunto(s)
Canalopatías/genética , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Trombosis/genética , Anemia Hemolítica Congénita/complicaciones , Anemia Hemolítica Congénita/genética , Anemia Hemolítica Congénita/patología , Canalopatías/complicaciones , Canalopatías/patología , Eritrocitos/patología , Mutación con Ganancia de Función , Hemólisis , Humanos , Masculino , Persona de Mediana Edad , Mutación Puntual , Trombosis/complicaciones , Trombosis/patologíaAsunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , Anemia Hemolítica Congénita/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Trastornos del Neurodesarrollo/genética , ATPasas de Translocación de Protón Vacuolares/genética , Anemia Hemolítica Congénita/patología , Médula Ósea/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Preescolar , Heterocigoto , Humanos , Amaurosis Congénita de Leber/genética , Amaurosis Congénita de Leber/patología , Imagen por Resonancia Magnética , Masculino , Mutación Missense , Trastornos del Neurodesarrollo/patología , Neuroimagen , Recuento de Reticulocitos , Secuenciación Completa del GenomaRESUMEN
Dent disease is a rare X-linked tubulopathy characterized by low molecular weight proteinuria, hypercalciuria, nephrocalcinosis and/or nephrolithiasis, progressive renal failure, and variable manifestations of other proximal tubule dysfunctions. It often progresses over a few decades to chronic renal insufficiency, and therefore molecular characterization is important to allow appropriate genetic counseling. Two genetic subtypes have been described to date: Dent disease 1 is caused by mutations of the CLCN5 gene, coding for the chloride/proton exchanger ClC-5; and Dent disease 2 by mutations of the OCRL gene, coding for the inositol polyphosphate 5-phosphatase OCRL-1. Herein, we review previously reported mutations (n = 192) and their associated phenotype in 377 male patients with Dent disease 1 and describe phenotype and novel (n = 42) and recurrent mutations (n = 24) in a large cohort of 117 Dent disease 1 patients belonging to 90 families. The novel missense and in-frame mutations described were mapped onto a three-dimensional homology model of the ClC-5 protein. This analysis suggests that these mutations affect the dimerization process, helix stability, or transport. The phenotype of our cohort patients supports and extends the phenotype that has been reported in smaller studies.
Asunto(s)
Canales de Cloruro/genética , Enfermedad de Dent/genética , Mutación , Animales , Canales de Cloruro/química , Canales de Cloruro/metabolismo , Estudios de Cohortes , Enfermedad de Dent/metabolismo , Estudios de Asociación Genética , Humanos , Masculino , Ratones , Ratones Noqueados , LinajeRESUMEN
ClC-Kb, a member of the ClC family of Cl(-) channels/transporters, plays a major role in the absorption of NaCl in the distal nephron. CLCNKB mutations cause Bartter syndrome type 3, a hereditary renal salt-wasting tubulopathy. Here, we investigate the functional consequences of a Val to Met substitution at position 170 (V170M, α helix F), which was detected in eight patients displaying a mild phenotype. Conductance and surface expression were reduced by ~40-50 %. The regulation of channel activity by external H(+) and Ca(2+) is a characteristic property of ClC-Kb. Inhibition by external H(+) was dramatically altered, with pKH shifting from 7.6 to 6.0. Stimulation by external Ca(2+) on the other hand was no longer detectable at pH 7.4, but was still present at acidic pH values. Functionally, these regulatory modifications partly counterbalance the reduced surface expression by rendering V170M hyperactive. Pathogenic Met170 seems to interact with another methionine on α helix H (Met227) since diverse mutations at this site partly removed pH sensitivity alterations of V170M ClC-Kb. Exploring other disease-associated mutations, we found that a Pro to Leu substitution at position 124 (α helix D, Simon et al., Nat Genet 1997, 17:171-178) had functional consequences similar to those of V170M. In conclusion, we report here for the first time that ClC-Kb disease-causing mutations located around the selectivity filter can result in both reduced surface expression and hyperactivity in heterologous expression systems. This interplay must be considered when analyzing the mild phenotype of patients with type 3 Bartter syndrome.
Asunto(s)
Síndrome de Bartter/genética , Síndrome de Bartter/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Mutación Puntual , Adulto , Calcio/metabolismo , Femenino , Humanos , Concentración de Iones de Hidrógeno , Persona de Mediana Edad , Técnicas de Placa-Clamp , Fenotipo , Adulto JovenRESUMEN
BACKGROUND: Gitelman syndrome is an autosomal recessive tubulopathy characterized by hypokalemia, hypomagnesemia, metabolic alkalosis and hypocalciuria. The majority of patients do not present with symptoms until late childhood or adulthood, and the symptoms are generally mild. We report here the first case of Gitelman syndrome presenting with the biological features of Fanconi syndrome and an early polyuria since the neonatal period. We discuss in this article the atypical electrolytes losses found in our patient, as well as the possible mechanisms of severe polyuria. CASE PRESENTATION: A 6-year-old Caucasian girl was admitted via the Emergency department for vomiting, and initial laboratory investigations found hyponatremia, hypokalemia, metabolic acidosis with normal anion gap, hypophosphatemia, and hypouricemia. Urinalysis revealed Na, K, Ph and uric acid losses. Thus, the initial biological profile was in favor of a proximal tubular defect. However, etiological investigations were inconclusive and the patient was discharged with potassium chloride and phosphorus supplementation. Three weeks later, further laboratory analysis indicated persistent hypokalemia, a metabolic alkalosis, hypomagnesemia, and hypocalciuria. We therefore sequenced the SLC12A3 gene and found a compound heterozygosity for 2 known missense mutations. CONCLUSIONS: Gitelman syndrome can have varying and sometimes atypical presentations, and should be suspected in case of hypokalemic tubular disorders that do not belong to any obvious syndromic entity. In this case, the proximal tubular dysfunction could be secondary to the severe hypokalemia. This report emphasizes the need for clinicians to repeat laboratory tests in undiagnosed tubular disorders, especially not during decompensation episodes.
Asunto(s)
Síndrome de Fanconi/diagnóstico , Síndrome de Gitelman/diagnóstico , Poliuria/etiología , Niño , Diagnóstico Diferencial , Femenino , Síndrome de Gitelman/complicaciones , HumanosRESUMEN
Methionine synthase reductase deficiency (cblE) is a rare autosomal recessive inborn error of cobalamin metabolism caused by pathogenic variants in the methionine synthase reductase gene (MTRR). Patients usually exhibit early-onset bone marrow failure with pancytopenia including megaloblastic anemia. The latter can remain isolated or patients may present developmental delay and rarely macular dysfunction. Treatment mostly includes parenteral hydroxocobalamin to maximize the residual enzyme function and betaine to increase methionine concentrations and decrease homocysteine accumulation. We report herein 2 cblE siblings diagnosed in the neonatal period with isolated pancytopenia who, despite treatment, exhibited in adulthood hemolytic anemia (LDH >11 000 U/L, undetectable haptoglobin, elevated unconjugated bilirubin) which could finally be successfully treated by hydroxocobalamin dose escalation. There was no obvious trigger apart from a parvovirus B19 infection in one of the patients. This is the first report of such complications in adulthood. The use of LDH for disease monitoring could possibly be an additional useful biomarker to adjust hydroxocobalamin dosage. Bone marrow infection with parvovirus B19 can complicate this genetic disease with erythroblastopenia even in the absence of an immunocompromised status, as in other congenital hemolytic anemias. The observation of novel hemolytic features in this rare disease should raise awareness about specific complications in remethylation disorders and plea for hydroxocobalamin dose escalation.
RESUMEN
Sodium dependent multivitamin transporter (SMVT) deficiency is a very rare autosomal recessive disorder characterized by multisystemic clinical manifestations due to combined biotin, panthotenic acid and lipoic acid deficiency. About 10 families have been described so far. Accurate diagnosis is crucial because of the possibility of a supplementation treatment with proven efficacy. Here we describe 4 new patients (3 additional families) originating from the same world region (Algeria, Maghreb). All patients, born form consanguineous parents, were homozygous carriers of the same intronic variation, outside of canonical sites, in the SLC5A6 gene encoding SMVT. RNA study in one family allowed confirming the pathogenic effect of the variation and re-classifying this variant of uncertain significance as pathogenic, opening the possibility of genetic counseling and treatment. The identification of the same variation in three distinct and apparently unrelated families is suggestive of a founder effect. The phenotype of all patients was very similar, with systematic optic atrophy (initially considered as a very rare sign), severe cyclic vomiting, and rapidly progressive mixed axonal and demyelinating sensory motor neuropathy.
RESUMEN
Gardos channelopathy (Gardos-HX) or type 2 stomatocytosis/xerocytosis is a hereditary hemolytic anemia due to mutations in the KCNN4 gene. It is rarer than inherited type 1 xerocytosis due to PIEZO1 mutations (Piezo1-HX) and its diagnosis is difficult given the absence of a specific clinical or biological phenotype. We report here that this diagnosis can be sped up using red blood cell (RBC) indices performed on an ADVIA 2120 (Siemens®) analyzer, which measures reticulocyte mean corpuscular volume (rMCV) and mean corpuscular hemoglobin concentration (rMCHC). We studied reticulocyte indices in 3 new and 12 described patients (8 families) with Gardos-HX, 11 subjects presented the recurrent p.Arg352His mutation, 4 cases (two families) carried a private KCNN4 mutation. They were compared to 79 described patients (49 families) with Piezo1-HX. Surprisingly, in Gardos-HX cases, rMCV revealed to be smaller than MCV and rMCHC higher than MCHC, in contrast with normal or Piezo1-HX RBC. Consequently, ΔMCV (rMCV-MCV) was -0.9 ± 5 fL vs. 19.8 ± 3 fL (p < 0.001) in Gardos compared with Piezo1-HX and ΔMCHC (rMCHC-MCHC) was 18.7 ± 13 vs. -50 ± 8.7 g/L (p < 0.001). A threshold of 8.6 fL for ΔMCV and -5.5 g/L for ΔMCHC could discriminate between Gardos and Piezo1-HX with 100% sensitivity and specificity, regardless of age, mutation or splenectomy status. Consequently, we showed that reticulocytes indices are useful to suggest Gardos-HX on blood count results, allowing to rapidly target these patients for gene analysis. In addition, these parameters may prove useful as a 'functional tool' in interpreting new KCNN4 variants.
RESUMEN
BACKGROUND: Congenital hemolytic anemia constitutes a heterogeneous group of rare genetic disorders of red blood cells. Diagnosis is based on clinical data, family history and phenotypic testing, genetic analyses being usually performed as a late step. In this study, we explored 40 patients with congenital hemolytic anemia by whole exome sequencing: 20 patients with hereditary spherocytosis and 20 patients with unexplained hemolysis. RESULTS: A probable genetic cause of disease was identified in 82.5% of the patients (33/40): 100% of those with suspected hereditary spherocytosis (20/20) and 65% of those with unexplained hemolysis (13/20). We found that several patients carried genetic variations in more than one gene (3/20 in the hereditary spherocytosis group, 6/13 fully elucidated patients in the unexplained hemolysis group), giving a more accurate picture of the genetic complexity of congenital hemolytic anemia. In addition, whole exome sequencing allowed us to identify genetic variants in non-congenital hemolytic anemia genes that explained part of the phenotype in 3 patients. CONCLUSION: The rapid development of next generation sequencing has rendered the genetic study of these diseases much easier and cheaper. Whole exome sequencing in congenital hemolytic anemia could provide a more precise and quicker diagnosis, improve patients' healthcare and probably has to be democratized notably for complex cases.
Asunto(s)
Anemia Hemolítica Congénita , Esferocitosis Hereditaria , Anemia Hemolítica Congénita/genética , Exoma/genética , Humanos , Mutación/genética , Esferocitosis Hereditaria/diagnóstico , Esferocitosis Hereditaria/genética , Secuenciación del ExomaRESUMEN
A heterozygous intragenic duplication within the repeated area (CTGCAGCTG)×2 of the NR5A1 gene was found in a 15-year-old 46,XY DSD (disorders/differences of sex development) patient with micropenis and severe proximal hypospadias. This heterozygous duplication has already been described twice in boys with a similar phenotype, whereas a deletion of 3 amino acids at the same position in the protein SF-1 has been described in a 46,XX patient with primary ovarian failure and short stature. These data suggest that this region within the NR5A1 gene has an important role for SF-1 protein function in gonads and is a hotspot for intragenic rearrangements.
Asunto(s)
Trastorno del Desarrollo Sexual 46,XY/genética , Hipospadias/genética , Factor Esteroidogénico 1/genética , Adolescente , Heterocigoto , Humanos , Hipospadias/metabolismo , Masculino , Mutación/genética , Factor Esteroidogénico 1/metabolismoRESUMEN
CONTEXT: Familial hypocalciuric hypercalcemia (FHH) is a genetically heterogeneous condition resembling primary hyperparathyroidism (PHPT) but not curable by surgery; FHH types 1, 2, and 3 are due to loss-of-function mutations of the CASR, GNA11, or AP2S1 genes, respectively. OBJECTIVE: This study aimed to compare the phenotypes of patients with genetically proven FHH types 1 or 3 or PHPT. DESIGN, SETTING, AND PATIENTS: This was a mutation analysis in a large cohort, a cross-sectional comparison of 52 patients with FHH type 1, 22 patients with FHH type 3, 60 with PHPT, and 24 normal adults. INTERVENTION: There were no interventions. MAIN OUTCOME MEASURES: Abnormalities of the CASR, GNA11, and AP2S1 genes, blood calcium, phosphate, and PTH concentrations, urinary calcium excretion were measured. RESULTS: In 133 families, we detected 101 mutations in the CASR gene, 68 of which were previously unknown, and in 19 families, the three recurrent AP2S1 mutations. No mutation was detected in the GNA11 gene. Patients with FHH type 3 had higher plasma calcium concentrations than patients with FHH type 1, despite having similar PTH concentrations and urinary calcium excretion. Renal tubular calcium reabsorption levels were higher in patients with FHH type 3 than in those with FHH type 1. Plasma calcium concentration was higher whereas PTH concentration and urinary calcium excretion were lower in FHH patients than in PHPT patients. In patients with FHH or PHPT, all data groups partially overlapped. CONCLUSION: In our population, AP2S1 mutations affect calcium homeostasis more severely than CASR mutations. Due to overlap, the risk of confusion between FHH and PHPT is high.