Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Cell Physiol ; 233(4): 3465-3475, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28926104

RESUMEN

The intestinal epithelium plays an essential role in nutrient absorption, hormone release, and barrier function. Maintenance of the epithelium is driven by continuous cell renewal by stem cells located in the intestinal crypts. The amount and type of diet influence this process and result in changes in the size and cellular make-up of the tissue. The mechanism underlying the nutrient-driven changes in proliferation is not known, but may involve a shift in intracellular metabolism that allows for more nutrients to be used to manufacture new cells. We hypothesized that nutrient availability drives changes in cellular energy metabolism of small intestinal epithelial crypts that could contribute to increases in crypt proliferation. We utilized primary small intestinal epithelial crypts from C57BL/6J mice to study (1) the effect of glucose on crypt proliferation and (2) the effect of glucose on crypt metabolism using an extracellular flux analyzer for real-time metabolic measurements. We found that glucose increased both crypt proliferation and glycolysis, and the glycolytic pathway inhibitor 2-deoxy-d-glucose (2-DG) attenuated glucose-induced crypt proliferation. Glucose did not enhance glucose oxidation, but did increase the maximum mitochondrial respiratory capacity, which may contribute to glucose-induced increases in proliferation. Glucose activated Akt/HIF-1α signaling pathway, which might be at least in part responsible for glucose-induced glycolysis and cell proliferation. These results suggest that high glucose availability induces an increase in crypt proliferation by inducing an increase in glycolysis with no change in glucose oxidation.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Glucosa/farmacología , Mucosa Intestinal/efectos de los fármacos , Células Madre/efectos de los fármacos , Animales , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Mucosa Intestinal/metabolismo , Masculino , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Células Madre/metabolismo
2.
J Cell Physiol ; 232(1): 167-75, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27061934

RESUMEN

The small intestine is the main organ involved in the digestion and absorption of nutrients. It is in an ideal position to sense the availability of energy in the lumen in addition to its absorptive function. Consumption of a high-fat diet (HFD) influences the metabolic characteristics of the small intestine. Therefore, to better understand the metabolic features of the small intestine and their changes in response to dietary fat, we characterized the metabolism of duodenal, jejunal, and hepatic cell lines and assessed the metabolic changes in the enterocytes and the liver after short-term (3 days) or medium-term (14 days) HFD feeding in mice. Experiments with immortalized enterocytes indicated a higher glycolytic capacity in the duodenal cell line compared to the other two cell lines, whereas the jejunal cell line exhibited a high oxidative metabolism. Short-term HFD feeding induced changes in the expression of glucose and lipid metabolism-related genes in the duodenum and the jejunum of mice, but not in the liver. When focusing on fatty acid oxidation both, short- and medium-term HFD feeding induced an upregulation of 3-hydroxy-3-methylglutaryl-coenzyme A, the key enzyme of ketogenesis, at the protein level in the intestinal epithelial cells, but not in the liver. These results suggest that HFD feeding induces an early adaptation of the small intestine rather than the liver in response to a substantial fat load. This highlights the importance of the small intestine in the adaptation of the body to the metabolic changes induced by HFD exposure. J. Cell. Physiol. 232: 167-175, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Dieta Alta en Grasa , Enterocitos/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Intestino Delgado/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Obesidad/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Composición Corporal/efectos de los fármacos , Composición Corporal/fisiología , Grasas de la Dieta/metabolismo , Enterocitos/metabolismo , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Factores de Tiempo
3.
Am J Physiol Regul Integr Comp Physiol ; 311(3): R618-27, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27488889

RESUMEN

Thylakoids reduce body weight gain and body fat accumulation in rodents. This study investigated whether an enhanced oxidation of dietary fat-derived fatty acids in the intestine contributes to the thylakoid effects. Male Sprague-Dawley rats were fed a high-fat diet with (n = 8) or without thylakoids (n = 8) for 2 wk. Body weight, food intake, and body fat were measured, and intestinal mucosa was collected and analyzed. Quantitative real-time PCR was used to measure gene expression levels of key enzymes involved in fatty acid transport, fatty acid oxidation, and ketogenesis. Another set of thylakoid-treated (n = 10) and control rats (n = 10) went through indirect calorimetry. In the first experiment, thylakoid-treated rats (n = 8) accumulated 25% less visceral fat than controls. Furthermore, fatty acid translocase (Fat/Cd36), carnitine palmitoyltransferase 1a (Cpt1a), and mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (Hmgcs2) genes were upregulated in the jejunum of the thylakoid-treated group. In the second experiment, thylakoid-treated rats (n = 10) gained 17.5% less weight compared with controls and their respiratory quotient was lower, 0.86 compared with 0.91. Thylakoid-intake resulted in decreased food intake and did not cause steatorrhea. These results suggest that thylakoids stimulated intestinal fatty acid oxidation and ketogenesis, resulting in an increased ability of the intestine to handle dietary fat. The increased fatty acid oxidation and the resulting reduction in food intake may contribute to the reduced fat accumulation in thylakoid-treated animals.


Asunto(s)
Dieta Alta en Grasa , Ácidos Grasos/metabolismo , Mucosa Intestinal/metabolismo , Grasa Intraabdominal/fisiología , Tilacoides/metabolismo , Regulación hacia Arriba/fisiología , Animales , Masculino , Tamaño de los Órganos/fisiología , Oxidación-Reducción , Ratas , Ratas Sprague-Dawley , Tilacoides/química
4.
FASEB J ; 29(6): 2473-83, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25713059

RESUMEN

Adult skeletal muscle is a dynamic, remarkably plastic tissue, which allows myofibers to switch from fast/glycolytic to slow/oxidative types and to increase mitochondrial fatty acid oxidation (mFAO) capacity and vascularization in response to exercise training. mFAO is the main muscle energy source during endurance exercise, with carnitine palmitoyltransferase 1 (CPT1) being the key regulatory enzyme. Whether increasing muscle mFAO affects skeletal muscle physiology in adulthood actually remains unknown. To investigate this, we used in vivo electrotransfer technology to express in mouse tibialis anterior (TA), a fast/glycolytic muscle, a mutated CPT1 form (CPT1mt) that is active but insensitive to malonyl-CoA, its physiologic inhibitor. In young (2-mo-old) adult mice, muscle CPT1mt expression enhanced mFAO (+40%), but also increased the percentage of oxidative fibers (+28%), glycogen content, and capillary-to-fiber density (+45%). This CPT1mt-induced muscle remodeling, which mimicked exercise-induced oxidative phenotype, led to a greater resistance to muscle fatigue. In the context of aging, characterized by sarcopenia and reduced oxidative capacity, CPT1mt expression in TAs from aged (20-mo-old) mice partially reversed aging-associated sarcopenia and fiber-type transition, and increased muscle capillarity. These findings provide evidence that mFAO regulates muscle phenotype and may be a potential target to combat age-related decline in muscle function.


Asunto(s)
Carnitina O-Palmitoiltransferasa/metabolismo , Ácidos Grasos/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Factores de Edad , Animales , Western Blotting , Carnitina O-Palmitoiltransferasa/genética , Expresión Génica , Glucógeno/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitocondrias Musculares/fisiología , Fatiga Muscular/genética , Fatiga Muscular/fisiología , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/fisiología , Mutación , Oxidación-Reducción , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sarcopenia/genética , Sarcopenia/fisiopatología , Transfección
5.
Am J Physiol Regul Integr Comp Physiol ; 308(2): R131-7, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25427767

RESUMEN

Hepatic fatty acid oxidation (FAO) has long been implicated in the control of eating. Nevertheless, direct evidence for a causal relationship between changes in hepatic FAO and changes in food intake is still missing. Here we tested whether increasing hepatic FAO via adenovirus-mediated expression of a mutated form of the key regulatory enzyme of mitochondrial FAO carnitine palmitoyltransferase 1A (CPT1mt), which is active but insensitive to inhibition by malonyl-CoA, affects eating and metabolism in mice. CPT1mt expression increased hepatocellular CPT1 protein levels. This resulted in an increase in circulating ketone body levels in fasted CPT1mt-expressing mice, suggesting an increase in hepatic FAO. These mice did not show any significant changes in cumulative food intake, energy expenditure, or respiratory quotient after 4-h food deprivation. After 24-h food deprivation, however, the CPT1mt-expressing mice displayed increased food intake. Thus expression of CPT1mt in the liver increases hepatic FAO capacity, but does not inhibit eating. Rather, it may even stimulate eating after prolonged food deprivation. These data do not support the hypothesis that an increase in hepatic FAO decreases food intake.


Asunto(s)
Carnitina O-Palmitoiltransferasa/metabolismo , Ingestión de Alimentos/fisiología , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/fisiología , Hígado/metabolismo , Mitocondrias/metabolismo , Animales , Metabolismo Energético/fisiología , Privación de Alimentos/fisiología , Masculino , Ratones Endogámicos C57BL , Modelos Animales , Oxidación-Reducción
6.
Am J Physiol Regul Integr Comp Physiol ; 307(2): R167-78, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24829501

RESUMEN

The endogenous lipid messenger oleoylethanolamide (OEA) inhibits eating and modulates fat metabolism supposedly through the activation of peroxisome proliferator-activated receptor-α (PPARα) and vagal sensory fibers. We tested in adult male rats whether OEA stimulates fatty acid oxidation (FAO) and ketogenesis and whether it increases plasma levels of the satiating gut peptides glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). We also explored whether OEA still inhibits eating after subdiaphragmatic vagal deafferentation (SDA). We found that intraperitoneally injected OEA (10 mg/kg body wt) reduced (P < 0.05) food intake mainly by increasing meal latency and that this effect was stronger in rats fed a 60% high-fat diet (HFD) than in chow-fed rats. OEA increased (P < 0.05) postprandial plasma nonesterified fatty acids and ß-hydroxybutyrate (BHB) in the hepatic portal vein (HPV) and vena cava (VC) 30 min after injection, which was more pronounced in HFD- than in chow-fed rats. OEA also increased the protein expression of the key ketogenetic enzyme, mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase, in the jejunum of HFD-fed rats, but not in the liver or duodenum of either diet group. Furthermore, OEA decreased GLP-1 and PYY concentrations (P < 0.05) in the HPV and VC 30 min after administration. Finally, OEA reduced food intake in SDA and sham-operated rats similarly. Our findings indicate that neither intact abdominal vagal afferents nor prandial increases in GLP-1 or


Asunto(s)
Ingestión de Alimentos/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Metabolismo de los Lípidos , Ácidos Oléicos/farmacología , Saciedad/efectos de los fármacos , Animales , Dieta Alta en Grasa/efectos adversos , Ingestión de Alimentos/fisiología , Endocannabinoides , Tracto Gastrointestinal/inervación , Tracto Gastrointestinal/metabolismo , Péptido 1 Similar al Glucagón/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/fisiología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ácidos Oléicos/administración & dosificación , Ratas , Ratas Sprague-Dawley , Saciedad/fisiología , Nervio Vago/cirugía
7.
J Lipid Res ; 54(5): 1369-84, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23449193

RESUMEN

Acyl CoA:diacylglycerol acyltransferase-1 (DGAT-1) catalyzes the final step in triacylglycerol (TAG) synthesis and is highly expressed in the small intestine. Because DGAT-1 knockout mice are resistant to diet-induced obesity, we investigated the acute effects of intragastric (IG) infusion of a small molecule diacylglycerol acyltransferase-1 inhibitor (DGAT-1i) on eating, circulating fat metabolites, indirect calorimetry, and hepatic and intestinal expression of key fat catabolism enzymes in male rats adapted to an 8 h feeding-16 h deprivation schedule. Also, the DGAT-1i effect on fatty acid oxidation (FAO) was investigated in enterocyte cell culture models. IG DGAT-1i infusions reduced energy intake compared with vehicle in high-fat diet (HFD)-fed rats, but scarcely in chow-fed rats. IG DGAT-1i also blunted the postprandial increase in serum TAG and increased ß-hydroxybutyrate levels only in HFD-fed rats, in which it lowered the respiratory quotient and increased intestinal, but not hepatic, protein levels of Complex III of the mitochondrial respiratory chain and of mitochondrial hydroxymethylglutaryl-CoA synthase. Finally, the DGAT-1i enhanced FAO in CaCo2 (EC50 = 0.3494) and HuTu80 (EC50 = 0.00762) cells. Thus, pharmacological DGAT-1 inhibition leads to an increase in intestinal FAO and ketogenesis when dietary fat is available. This may contribute to the observed eating-inhibitory effect.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/metabolismo , Ácidos Grasos/metabolismo , Mucosa Intestinal/metabolismo , Oxidación-Reducción , Acilcoenzima A/metabolismo , Animales , Diacilglicerol O-Acetiltransferasa/antagonistas & inhibidores , Dieta Alta en Grasa , Complejo III de Transporte de Electrones/metabolismo , Ingestión de Energía , Humanos , Intestinos/enzimología , Hígado/enzimología , Hígado/metabolismo , Masculino , Ratas
8.
J Hepatol ; 56(3): 632-9, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22037024

RESUMEN

BACKGROUND & AIMS: Despite major public health concern, therapy for non-alcoholic fatty liver, the liver manifestation of the metabolic syndrome often associated with insulin resistance (IR), remains elusive. Strategies aiming to decrease liver lipogenesis effectively corrected hepatic steatosis and IR in obese animals. However, they also indirectly increased mitochondrial long-chain fatty acid oxidation (mFAO) by decreasing malonyl-CoA, a lipogenic intermediate, which is the allosteric inhibitor of carnitine palmitoyltransferase 1 (CPT1A), the key enzyme of mFAO. We thus addressed whether enhancing hepatic mFAO capacity, through a direct modulation of liver CPT1A/malonyl-CoA partnership, can reverse an already established hepatic steatosis and IR in obese mice. METHODS: Adenovirus-mediated liver expression of a malonyl-CoA-insensitive CPT1A (CPT1mt) in high-fat/high-sucrose (HF/HS) diet-induced or genetically (ob/ob) obese mice was followed by metabolic and physiological investigations. RESULTS: In association with increased hepatic mFAO capacity, liver CPT1mt expression improved glucose tolerance and insulin response to a glucose load in HF/HS and ob/ob mice, showing increased insulin sensitivity, and corrected IR in ob/ob mice. Surprisingly, hepatic steatosis was not affected in CPT1mt-expressing obese mice, indicating a clear dissociation between hepatic steatosis and IR. Moreover, liver CPT1mt expression rescued HF/HS-induced impaired hepatic insulin signaling at the level of IRS-1, IRS-2, Akt, and GSK-3ß, most likely through the observed decrease in the HF/HS-induced accumulation of lipotoxic lipids, oxidative stress, and JNK activation. CONCLUSIONS: Enhancing hepatic mFAO capacity is sufficient to reverse a state of IR and glucose intolerance in obese mice independently of hepatic steatosis.


Asunto(s)
Ácidos Grasos/metabolismo , Hígado Graso/metabolismo , Intolerancia a la Glucosa/metabolismo , Resistencia a la Insulina/fisiología , Mitocondrias Hepáticas/metabolismo , Obesidad/metabolismo , Adenoviridae/genética , Adiposidad/fisiología , Animales , Peso Corporal/fisiología , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Ácido Glucárico/metabolismo , Metabolismo de los Lípidos/fisiología , Masculino , Malonil Coenzima A/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Oxidación-Reducción
9.
J Biol Chem ; 285(47): 36818-27, 2010 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-20837491

RESUMEN

The mechanisms underlying the protective effect of monounsaturated fatty acids (e.g. oleate) against the lipotoxic action of saturated fatty acids (e.g. palmitate) in skeletal muscle cells remain poorly understood. This study aimed to examine the role of mitochondrial long-chain fatty acid (LCFA) oxidation in mediating oleate's protective effect against palmitate-induced lipotoxicity. CPT1 (carnitine palmitoyltransferase 1), which is the key regulatory enzyme of mitochondrial LCFA oxidation, is inhibited by malonyl-CoA, an intermediate of lipogenesis. We showed that expression of a mutant form of CPT1 (CPT1mt), which is active but insensitive to malonyl-CoA inhibition, in C2C12 myotubes led to increased LCFA oxidation flux even in the presence of high concentrations of glucose and insulin. Furthermore, similar to preincubation with oleate, CPT1mt expression protected muscle cells from palmitate-induced apoptosis and insulin resistance by decreasing the content of deleterious palmitate derivates (i.e. diacylglycerols and ceramides). Oleate preincubation exerted its protective effect by two mechanisms: (i) in contrast to CPT1mt expression, oleate preincubation increased the channeling of palmitate toward triglycerides, as a result of enhanced diacylglycerol acyltransferase 2 expression, and (ii) oleate preincubation promoted palmitate oxidation through increasing CPT1 expression and modulating the activities of acetyl-CoA carboxylase and AMP-activated protein kinase. In conclusion, we demonstrated that targeting mitochondrial LCFA oxidation via CPT1mt expression leads to the same protective effect as oleate preincubation, providing strong evidence that redirecting palmitate metabolism toward oxidation is sufficient to protect against palmitate-induced lipotoxicity.


Asunto(s)
Apoptosis , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Ácido Oléico/química , Palmitatos/farmacología , Animales , Western Blotting , Carnitina O-Palmitoiltransferasa/metabolismo , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Ratones , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Ácido Oléico/metabolismo , Oxidación-Reducción , Consumo de Oxígeno , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Nutrition ; 24(4): 360-5, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18234475

RESUMEN

OBJECTIVE AND METHODS: Mercaptoacetate (MA) inhibits hepatic fatty acid oxidation (FAO) and stimulates feeding in rats fed fat-rich diets. To test whether the feeding stimulation by MA depends on hepatic FAO, we compared the effects of intraperitoneally injected MA (45.6 mg/kg body weight) with saline in rats fed diets containing 18% predominately long-chain triacylglycerols (LCTs; > or =90% 16 C) or 18% medium-chain triacylglycerols (MCTs; 51% 10-12 C). We hypothesized that, because medium-chain fatty acids reach the liver and are oxidized faster than long-chain fatty acids, if MA's feeding-stimulatory effect depends on hepatic FAO, MA should stimulate feeding more in MCT-fed rats than in LCT-fed rats. RESULTS: Although MA injected in mid-light phase stimulated feeding similarly in MCT- and LCT-fed rats, MA injected at light onset initially stimulated food intake (1 h) only in LCT- and not in MCT-fed rats. To investigate MA's metabolic effects during the initial hour, rats were sacrificed 30 min after light-onset injections. At this time plasma beta-hydroxybutyrate appeared to be higher in MCT- than in LCT-fed rats and to be increased by MA. In a final experiment, MA did not affect fatty acid content in liver and duodenum tissues but increased fatty acids in duodenal tissue mitochondria from 12 h-fasted rats fed chow. CONCLUSION: In light-onset tests, adaptation to the MCT diet increased hepatic FAO but not the feeding-stimulatory effect of MA in comparison with adaptation to the LCT diet, suggesting that at this time MA does not act in the liver to stimulate feeding or that this effect is not due to FAO inhibition. Inhibition of duodenal mitochondrial FAO may be another metabolic process through which MA stimulates feeding.


Asunto(s)
Ingestión de Energía/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Tioglicolatos/farmacología , Triglicéridos/metabolismo , Animales , Duodeno/metabolismo , Ingestión de Energía/fisiología , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/fisiología , Privación de Alimentos , Inyecciones Intraperitoneales/veterinaria , Metabolismo de los Lípidos/fisiología , Masculino , Oxidación-Reducción , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Triglicéridos/administración & dosificación , Triglicéridos/química
11.
Physiol Rep ; 6(3)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29388342

RESUMEN

The endogenous peroxisome proliferator-activated receptor alpha (PPAR-α) agonist Oleoylethanolamide (OEA) inhibits eating in rodents, mainly by delaying the onset of meals. The underlying mechanisms of OEA-induced anorexia, however, remain unclear. Animals treated with high OEA doses were shown to display signs of discomfort and impaired locomotion. Therefore, we first examined whether the impaired locomotion may contribute to OEA's anorectic effect. Second, it is controversial whether abdominal vagal afferents are necessary for OEA's anorectic effect. Thus, we explored alternative peripheral neural pathways mediating IP OEA's anorectic effect by performing a celiac-superior mesenteric ganglionectomy (CGX) or a subdiaphragmatic vagal deafferentation (SDA) alone or in combination. Exogenously administered OEA at a commonly used dose (10 mg/kg BW, IP) concurrently reduced food intake and compromised locomotor activity. Attempts to dissociate both phenomena using the dopamine D2/D3 receptor agonist Quinpirole (1 mg/kg BW, SC) failed because Quinpirole antagonized both, OEA-induced locomotor impairment and delay in eating onset. CGX attenuated the prolongation of the latency to eat by IP OEA, but neither SDA nor CGX prevented IP OEA-induced locomotor impairment. Our results indicate that IP OEA's anorectic effect may be secondary to impaired locomotion rather than due to physiological satiety. They further confirm that vagal afferents do not mediate exogenous OEA's anorectic effects, but suggest a role for spinal afferents in addition to an alternative, nonneuronal signaling route.


Asunto(s)
Anorexia/fisiopatología , Endocannabinoides/farmacología , Locomoción , Ácidos Oléicos/farmacología , Animales , Anorexia/etiología , Ingestión de Alimentos/efectos de los fármacos , Endocannabinoides/toxicidad , Masculino , Ácidos Oléicos/toxicidad , Ratas , Ratas Sprague-Dawley , Nervio Vago/fisiología
12.
Sci Rep ; 8(1): 10818, 2018 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-30018405

RESUMEN

Studies indicate that modulating enterocyte metabolism might affect whole body glucose homeostasis and the development of diet-induced obesity (DIO). We tested whether enhancing enterocyte fatty acid oxidation (FAO) could protect mice from DIO and impaired glycemic control. To this end, we used mice expressing a mutant form of carnitine palmitoyltransferase-1a (CPT1mt), insensitive to inhibition by malonyl-CoA, in their enterocytes (iCPT1mt) and fed them low-fat control diet (CD) or high-fat diet (HFD) chronically. CPT1mt expression led to an upregulation of FAO in the enterocytes. On CD, iCPT1mt mice had impaired glycemic control and showed concomitant activation of lipogenesis, glycolysis and gluconeogenesis in their enterocytes. On HFD, both iCPT1mt and control mice developed DIO, but iCPT1mt mice showed improved glycemic control and reduced visceral fat mass. Together these data indicate that modulating enterocyte metabolism in iCPT1mt mice affects glycemic control in a body weight-independent, but dietary fat-dependent manner.


Asunto(s)
Dieta Alta en Grasa , Ácidos Grasos/química , Peroxidación de Lípido , Animales , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Células Cultivadas , Duodeno/patología , Enterocitos/citología , Enterocitos/metabolismo , Prueba de Tolerancia a la Glucosa , Glucólisis , Lipogénesis , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Obesidad/patología , Regulación hacia Arriba
13.
Mol Metab ; 6(10): 1264-1273, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29031725

RESUMEN

OBJECTIVE: Intestinal metabolism might play a greater role in regulating whole body metabolism than previously believed. We aimed to enhance enterocyte metabolism in mice and investigate if it plays a role in diet-induced obesity (DIO) and its comorbidities. METHODS: Using the cre-loxP system, we overexpressed the mitochondrial NAD+ dependent protein deacetylase SIRT3 in enterocytes of mice (iSIRT3 mice). We chronically fed iSIRT3 mice and floxed-SIRT3 control (S3fl) mice a low-fat, control diet (CD) or a high-fat diet (HFD) and then phenotyped the mice. RESULTS: There were no genotype differences in any of the parameters tested when the mice were fed CD. Also, iSIRT3 mice were equally susceptible to the development of DIO as S3fl mice when fed HFD. They were, however, better able than S3fl mice to regulate their blood glucose levels in response to exogenous insulin and glucose, indicating that they were protected from developing insulin resistance. This improved glucose homeostasis was accompanied by an increase in enterocyte metabolic activity and an upregulation of ketogenic gene expression in the small intestine. CONCLUSION: Enhancing enterocyte oxidative metabolism can improve whole body glucose homeostasis.


Asunto(s)
Peso Corporal/fisiología , Enterocitos/metabolismo , Glucosa/metabolismo , Mucosa Intestinal/metabolismo , Sirtuina 3/biosíntesis , Animales , Glucemia/metabolismo , Metabolismo Energético , Enterocitos/enzimología , Intolerancia a la Glucosa/metabolismo , Homeostasis , Humanos , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Mucosa Intestinal/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/genética , Obesidad/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo
14.
Metabolism ; 65(3): 8-17, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26892511

RESUMEN

OBJECTIVE: Glucagon-like peptide-1 (GLP-1) is a potent satiating and incretin hormone released by enteroendocrine L-cells in response to eating. Dietary fat, in particular monounsaturated fatty acids, such as oleic acid (OA), potently stimulates GLP-1 secretion from L-cells. It is, however, unclear whether the intracellular metabolic handling of OA is involved in this effect. METHODS: First we determined the optimal medium for the bioenergetics measurements. Then we examined the effect of OA on the metabolism of the immortalized enteroendocrine GLUTag cell model and assessed GLP-1 release in parallel. We measured oxygen consumption rate and extracellular acidification rate in response to OA and to different metabolic inhibitors with the Seahorse extracellular flux analyzer. RESULTS: OA increased cellular respiration and potently stimulated GLP-1 release. The fatty acid oxidation inhibitor etomoxir did neither reduce OA-induced respiration nor affect the OA-induced GLP-1 release. In contrast, inhibition of the respiratory chain or of downstream steps of aerobic glycolysis reduced the OA-induced GLP-1 release, and an inhibition of the first step of glycolysis by addition of 2-deoxy-d-glucose even abolished it. CONCLUSION: These findings indicate that an indirect stimulation of glycolysis is crucial for the OA-induced release of GLP-1.


Asunto(s)
Respiración de la Célula/efectos de los fármacos , Células Enteroendocrinas/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Glucólisis/efectos de los fármacos , Ácido Oléico/farmacología , Adenosina Trifosfato/biosíntesis , Animales , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Línea Celular , Transporte de Electrón/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Células Enteroendocrinas/efectos de los fármacos , Glucosa/metabolismo , Ratones , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Ácido Pirúvico/metabolismo
15.
J Pharm Biomed Anal ; 39(1-2): 22-6, 2005 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-15953704

RESUMEN

A series of cinnamic acids along with their corresponding benzoate analogues were tested for their ability to scavenge hydrogen peroxide (H(2)O(2)), by using a highly sensitive, peroxyoxalate chemiluminescence assay. Among benzoic acid derivatives, vanillic acid (3-hydroxy-4-methoxybenzoic acid) was found to be the most efficient H(2)O(2) scavenger with its hydrogen peroxide scavenging activity (SA(HP)) being 170.20 microM(-1), whereas protocatechuic acid (3,4-dihydroxybenzoic acid) exhibited the weakest activity (5.90 microM(-1)). Caffeic acid (3,4-dihydroxycinnamic acid) was the strongest antioxidant amongst cinnamate derivatives with a SA(HP) = 8.2 microM(-1), as opposed to m-coumaric acid (2-hydroxycinnamic acid), which was found to be a poor hydrogen peroxide scavenger (SA(HP) = 0.18 microM(-1)). Comparison between the two groups revealed that benzoate derivatives are much stronger hydrogen peroxide quenchers in relation with their cinnamate analogues, and this finding was discussed on a basis of structure-activity relationships and comparative assessment of other antioxidant characteristics.


Asunto(s)
Benzoatos/farmacología , Cinamatos/farmacología , Depuradores de Radicales Libres/química , Peróxido de Hidrógeno/química , Oxalatos/química , Benzoatos/química , Cinamatos/química , Mediciones Luminiscentes , Sensibilidad y Especificidad , Relación Estructura-Actividad
16.
PLoS One ; 8(9): e74869, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24069361

RESUMEN

PPAR-α plays a key role in lipid metabolism; it enhances fatty acid oxidation (FAO) and ketogenesis. Pharmacological PPAR-α activation improves insulin sensitivity and reduces food intake, but its mechanisms of action remain unknown. We here report that intraperitoneal (IP) administration of the PPAR-α agonist Wy-14643 (40 mg/kg BW) reduced food intake in adult male rats fed a high-fat diet (HFD, 49% of the energy) mainly through an increase in the latency to eat after injection, and without inducing a conditioned taste avoidance. Also, IP administered Wy-14643 caused an acute (the first 60 min) decrease in the respiratory quotient (RQ) and an increase in hepatic portal vein ß-hydroxybutyrate level (at 35 min) without affecting plasma non-esterified fatty acids. Given the known stimulatory effect of PPAR-α on FAO and ketogenesis, we measured the protein expression level of carnitine palmitoyltransferase-1 (CPT 1A) and mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase (HMG-CoAS2), two key enzymes for FAO and ketogenesis, respectively, in liver, duodenum and jejunum. Wy-14643 induced a significant increase in the expression of CPT 1A in the jejunum and duodenum and of HMG-CoAS2 in the jejunum, but neither CPT 1A nor HMG-CoAS2 expression was increased in the liver. The induction of CPT 1A and HMG-CoAS2 expression was associated with a decrease in the lipid droplet content selectively in the jejunum. Our findings indicate that Wy-14643 stimulates FAO and ketogenesis in the intestine, in particular in the jejunum, rather than in the liver, thus supporting the hypothesis that PPAR-α activation inhibits eating by stimulating intestinal FAO.


Asunto(s)
Ácidos Grasos/metabolismo , Conducta Alimentaria/efectos de los fármacos , Mucosa Intestinal/metabolismo , PPAR alfa/agonistas , Pirimidinas/farmacología , Ácido 3-Hidroxibutírico/sangre , Animales , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Dieta Alta en Grasa , Metabolismo Energético/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hidroximetilglutaril-CoA Sintasa/genética , Hidroximetilglutaril-CoA Sintasa/metabolismo , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Oxidación-Reducción , Pirimidinas/administración & dosificación , Ratas
18.
Am J Physiol Regul Integr Comp Physiol ; 295(3): R799-805, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18667714

RESUMEN

Central and intraperitoneal C75, an inhibitor of fatty acid synthase and stimulator of carnitine palmitoyl-transferase-1, inhibits eating in mice and rats. Mechanisms involved in feeding inhibition after central C75 have been identified, but little is yet known about how systemic C75 might inhibit eating. One issue is whether intraperitoneal C75 reduces food intake in rats by influencing normal physiological controls of food intake or acts nonselectively, for example by eliciting illness or aversion. Another issue relates to whether intraperitoneal C75 acts centrally or, similar to some other peripheral metabolic controls of eating, activates abdominal vagal afferents to inhibit eating. To further address these questions, we investigated the effects of intraperitoneal C75 on spontaneous meal patterns and the formation of conditioned taste aversion (CTA). We also tested whether the eating inhibitory effect of intraperitoneal C75 is vagally mediated by testing rats after either total subdiaphragmatic vagotomy (TVX) or selective subdiaphragmatic vagal deafferentations (SDA). Intraperitoneal injection of 3.2 and 7.5 mg/kg of C75 significantly reduced food intake 3, 12, and 24 h after injection by reducing the number of meals without affecting meal size, whereas 15 mg/kg of C75 reduced both meal number and meal size. The two smaller doses of C75 failed to induce a CTA, but 15 mg/kg C75 did. The eating inhibitory effect of C75 was not diminished in either TVX or SDA rats. We conclude that intraperitoneal injections of low doses of C75 inhibit eating in a behaviorally specific manner and that this effect does not require abdominal vagal afferents.


Asunto(s)
4-Butirolactona/análogos & derivados , Conducta Alimentaria/efectos de los fármacos , Neuronas Aferentes/efectos de los fármacos , Nervio Vago/efectos de los fármacos , 4-Butirolactona/farmacología , Animales , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Carnitina O-Palmitoiltransferasa/metabolismo , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Relación Dosis-Respuesta a Droga , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Ácido Graso Sintasas/antagonistas & inhibidores , Ácido Graso Sintasas/metabolismo , Ácidos Grasos/metabolismo , Conducta Alimentaria/fisiología , Inyecciones Intraperitoneales , Masculino , Neuronas Aferentes/fisiología , Ratas , Ratas Sprague-Dawley , Vagotomía , Nervio Vago/citología , Nervio Vago/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA