Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 415(23): 5605-5617, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37470813

RESUMEN

Mayaro virus (MAYV) is an emerging mosquito-borne alphavirus that causes clinical symptoms similar to those caused by Chikungunya virus (CHIKV), Dengue virus (DENV), and Zika virus (ZIKV). To differentiate MAYV from these viruses diagnostically, we have developed a portable device that integrates sample preparation with real-time, reverse-transcription, loop-mediated isothermal amplification (rRT-LAMP). First, we designed a rRT-LAMP assay targeting MAYV's non-structural protein (NS1) gene and determined the limit of detection of at least 10 viral genome equivalents per reaction. The assay was specific for MAYV, without cross-reactions with CHIKV, DENV, or ZIKV. The rRT-LAMP assay was integrated with a sample preparation device (SPD) wherein virus lysis and RNA enrichment/purification were carried out on the spot, without requiring pipetting, while subsequent real-time amplification device (RAD) enables virus detection at the point of care (POC). The functions of our platform were demonstrated using purified MAYV RNA or blood samples containing viable viruses. We have used the devices for detection of MAYV in as short as 13 min, with limit of detection to as low as 10 GEs/reaction.


Asunto(s)
Virus Chikungunya , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Infección por el Virus Zika/diagnóstico , Virus Zika/genética , Virus Chikungunya/genética , Técnicas de Amplificación de Ácido Nucleico , Genoma Viral , ARN Viral/genética
2.
Angew Chem Int Ed Engl ; 57(52): 17211-17214, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30358036

RESUMEN

The recent outbreaks of Zika virus (ZIKV) infection represent a public health challenge. Rapid, cost-effective, and reliable diagnostic tools for ZIKV detection at the point of care (POC) are highly desirable, especially for resource-limited nations. To address the need, we have developed an integrated device to achieve sample-to-answer ZIKV detection. The device features innovative ball-based valves enabling the storage and sequential delivery of reagents for virus lysis and a paper-based unit for RNA enrichment and purification. The paper unit is placed in a commercially available coffee mug that provides a constant temperature for reverse transcription loop-mediated isothermal amplification (RT-LAMP), followed by colorimetric detection by naked eye or a cellphone camera. Using the device, we demonstrated the reproducible detection of ZIKV in human urine and saliva samples.


Asunto(s)
Café/genética , Técnicas de Amplificación de Ácido Nucleico , ARN Viral/genética , Virus Zika/aislamiento & purificación
3.
Sci Rep ; 13(1): 4245, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918634

RESUMEN

Escherichia coli (E. coli) cells are present in fecal materials that can be the main source for disease-causing agents in water. As a result, E. coli is recommended as a water quality indicator. We have developed an innovative platform to detect E. coli for monitoring water quality on-site by integrating paper-based sample preparation with nucleic acid isothermal amplification. The platform carries out bacterial lysis and DNA enrichment onto a paper pad through ball-based valves for fluid control, with no need of laboratory equipment, followed by loop-mediated isothermal amplification (LAMP) in a battery-operated coffee mug, and colorimetric detection. We have used the platform to detect E. coli in environmental water samples in about 1 h, with a limit of quantitation of 0.2 CFU/mL, and 3 copies per reaction. The platform was confirmed for detecting multiple E. coli strains, and for water samples of different salt concentrations. We validated the functions of the platform by analyzing recreational water samples collected near the Atlantic Ocean that contain different concentrations of salt and bacteria.


Asunto(s)
Escherichia coli , Técnicas de Amplificación de Ácido Nucleico , Escherichia coli/genética , Bacterias/genética , Océano Atlántico
4.
Aerosol Sci Technol ; 57(11): 1142-1153, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38143528

RESUMEN

Airborne transmission of infectious (viable) SARS-CoV-2 is increasingly accepted as the primary manner by which the virus is spread from person to person. Risk of exposure to airborne virus is higher in enclosed and poorly ventilated spaces. We present a study focused on air sampling within residences occupied by individuals with COVID-19. Air samplers (BioSpot-VIVAS, VIVAS, and BC-251) were positioned in primary- and secondary-occupancy regions in seven homes. Swab samples were collected from high-touch surfaces. Isolation of SARS-CoV-2 was attempted for samples with virus detectable by RT-qPCR. Viable virus was quantified by plaque assay, and complete virus genome sequences were obtained for selected samples from each sampling day. SARS-CoV-2 was detected in 24 of 125 samples (19.2%) by RT-qPCR and isolated from 14 (11.2%) in cell cultures. It was detected in 80.9% (17/21) and cultured from 61.9% (13/21) of air samples collected using water condensation samplers, compared to swab samples which had a RT-qPCR detection rate of 10.5% (4/38) and virus isolation rate of 2.63% (1/38). No statistically significant differences existed in the likelihood of virus detection by RT-qPCR or amount of infectious virus in the air between areas of primary and secondary occupancy within residences. Our work provides information about the presence of SARS-CoV-2 in the air within homes of individuals with COVID-19. Information herein can help individuals make informed decisions about personal exposure risks when sharing indoor spaces with infected individuals isolating at home and further inform health departments and the public about SARS-CoV-2 exposure risks within residences.

5.
ACS Sens ; 6(11): 4176-4184, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34767357

RESUMEN

Early and accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses at the point-of-care is crucial for reducing disease transmission during the current pandemic and future flu seasons. To prepare for potential cocirculation of these two viruses, we report a valve-enabled, paper-based sample preparation device integrated with isothermal amplification for their simultaneous detection. The device incorporates (1) virus lysis and RNA enrichment, enabled by ball-based valves for sequential delivery of reagents with no pipet requirement, (2) reverse transcription loop-mediated isothermal amplification, carried out in a coffee mug, and (3) colorimetric detection. We have used the device for simultaneously detecting inactivated SARS-CoV-2 and influenza A H1N1 viruses in 50 min, with limits of detection at 2 and 6 genome equivalents, respectively. The device was further demonstrated to detect both viruses in environmental samples.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Sistemas de Atención de Punto , ARN Viral/genética , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA