Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38928298

RESUMEN

Pericytes are multipotent cells embedded within the vascular system, primarily surrounding capillaries and microvessels where they closely interact with endothelial cells. These cells are known for their intriguing properties due to their heterogeneity in tissue distribution, origin, and multifunctional capabilities. Specifically, pericytes are essential in regulating blood flow, promoting angiogenesis, and supporting tissue homeostasis and regeneration. These multifaceted roles draw on pericytes' remarkable ability to respond to biochemical cues, interact with neighboring cells, and adapt to changing environmental conditions. This review aims to summarize existing knowledge on pericytes, emphasizing their versatility and involvement in vascular integrity and tissue health. In particular, a comprehensive view of the major signaling pathways, such as PDGFß/ PDGFRß, TGF-ß, FOXO and VEGF, along with their downstream targets, which coordinate the behavior of pericytes in preserving vascular integrity and promoting tissue regeneration, will be discussed. In this light, a deeper understanding of the complex signaling networks defining the phenotype of pericytes in healthy tissues is crucial for the development of targeted therapies in vascular and degenerative diseases.


Asunto(s)
Homeostasis , Pericitos , Transducción de Señal , Pericitos/metabolismo , Pericitos/fisiología , Humanos , Animales , Neovascularización Fisiológica , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo
2.
Cell Mol Life Sci ; 79(2): 126, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35132494

RESUMEN

B-type lamins are fundamental components of the nuclear lamina, a complex structure that acts as a scaffold for organization and function of the nucleus. Lamin B1 and B2, the most represented isoforms, are encoded by LMNB1 and LMNB2 gene, respectively. All B-type lamins are synthesized as precursors and undergo sequential post-translational modifications to generate the mature protein. B-type lamins are involved in a wide range of nuclear functions, including DNA replication and repair, regulation of chromatin and nuclear stiffness. Moreover, lamins B1 and B2 regulate several cellular processes, such as tissue development, cell cycle, cellular proliferation, senescence, and DNA damage response. During embryogenesis, B-type lamins are essential for organogenesis, in particular for brain development. As expected from the numerous and pivotal functions of B-type lamins, mutations in their genes or fluctuations in their expression levels are critical for the onset of several diseases. Indeed, a growing range of human disorders have been linked to lamin B1 or B2, increasing the complexity of the group of diseases collectively known as laminopathies. This review highlights the recent findings on the biological role of B-type lamins under physiological or pathological conditions, with a particular emphasis on brain disorders and cancer.


Asunto(s)
Encefalopatías/metabolismo , Lamina Tipo B/fisiología , Laminopatías/metabolismo , Neoplasias/metabolismo , Animales , Humanos
3.
Cell Mol Life Sci ; 79(4): 195, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35303162

RESUMEN

Glioblastoma represents the most lethal brain tumor in adults. Several studies have shown the key role of phospholipase C ß1 (PLCß1) in the regulation of many mechanisms within the central nervous system suggesting PLCß1 as a novel signature gene in the molecular classification of high-grade gliomas. This study aims to determine the pathological impact of PLCß1 in glioblastoma, confirming that PLCß1 gene expression correlates with glioma's grade, and it is lower in 50 glioblastoma samples compared to 20 healthy individuals. PLCß1 silencing in cell lines and primary astrocytes, leads to increased cell migration and invasion, with the increment of mesenchymal transcription factors and markers, as Slug and N-Cadherin and metalloproteinases. Cell proliferation, through increased Ki-67 expression, and the main survival pathways, as ß-catenin, ERK1/2 and Stat3 pathways, are also affected by PLCß1 silencing. These data suggest a potential role of PLCß1 in maintaining a normal or less aggressive glioma phenotype.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proliferación Celular/genética , Glioblastoma/patología , Glioma/patología , Humanos , Fosfolipasa C beta/genética , Fosfolipasa C beta/metabolismo
4.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37685903

RESUMEN

Phospholipase C (PLC) enzymes represent crucial participants in the plasma membrane of mammalian cells, including the cardiac sarcolemmal (SL) membrane of cardiomyocytes. They are responsible for the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) into 1,2-diacylglycerol (DAG) and inositol (1,4,5) trisphosphate (Ins(1,4,5)P3), both essential lipid mediators. These second messengers regulate the intracellular calcium (Ca2+) concentration, which activates signal transduction cascades involved in the regulation of cardiomyocyte activity. Of note, emerging evidence suggests that changes in cardiomyocytes' phospholipid profiles are associated with an increased occurrence of cardiovascular diseases, but the underlying mechanisms are still poorly understood. This review aims to provide a comprehensive overview of the significant impact of PLC on the cardiovascular system, encompassing both physiological and pathological conditions. Specifically, it focuses on the relevance of PLCß isoforms as potential cardiac biomarkers, due to their implications for pathological disorders, such as cardiac hypertrophy, diabetic cardiomyopathy, and myocardial ischemia/reperfusion injury. Gaining a deeper understanding of the mechanisms underlying PLCß activation and regulation is crucial for unraveling the complex signaling networks involved in healthy and diseased myocardium. Ultimately, this knowledge holds significant promise for advancing the development of potential therapeutic strategies that can effectively target and address cardiac disorders by focusing on the PLCß subfamily.


Asunto(s)
Cardiopatías , Isoenzimas , Animales , Humanos , Fosfolipasa C beta , Miocitos Cardíacos , Biomarcadores , Mamíferos
5.
Cell Mol Life Sci ; 78(6): 2781-2795, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33034697

RESUMEN

Autosomal-dominant leukodystrophy (ADLD) is a rare fatal neurodegenerative disorder with overexpression of the nuclear lamina component, Lamin B1 due to LMNB1 gene duplication or deletions upstream of the gene. The molecular mechanisms responsible for driving the onset and development of this pathology are not clear yet. Vacuolar demyelination seems to be one of the most significant histopathological observations of ADLD. Considering the role of oligodendrocytes, astrocytes, and leukemia inhibitory factor (LIF)-activated signaling pathways in the myelination processes, this work aims to analyze the specific alterations in different cell populations from patients with LMNB1 duplications and engineered cellular models overexpressing Lamin B1 protein. Our results point out, for the first time, that astrocytes may be pivotal in the evolution of the disease. Indeed, cells from ADLD patients and astrocytes overexpressing LMNB1 show severe ultrastructural nuclear alterations, not present in oligodendrocytes overexpressing LMNB1. Moreover, the accumulation of Lamin B1 in astrocytes induces a reduction in LIF and in LIF-Receptor (LIF-R) levels with a consequential decrease in LIF secretion. Therefore, in both our cellular models, Jak/Stat3 and PI3K/Akt axes, downstream of LIF/LIF-R, are downregulated. Significantly, the administration of exogenous LIF can partially reverse the toxic effects induced by Lamin B1 accumulation with differences between astrocytes and oligodendrocytes, highlighting that LMNB1 overexpression drastically affects astrocytic function reducing their fundamental support to oligodendrocytes in the myelination process. In addition, inflammation has also been investigated, showing an increased activation in ADLD patients' cells.


Asunto(s)
Astrocitos/metabolismo , Enfermedades Desmielinizantes/patología , Lamina Tipo B/metabolismo , Transducción de Señal , Astrocitos/citología , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Células Cultivadas , Enfermedades Desmielinizantes/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Mediadores de Inflamación/metabolismo , Lamina Tipo B/genética , Factor Inhibidor de Leucemia/metabolismo , Factor Inhibidor de Leucemia/farmacología , Oligodendroglía/citología , Oligodendroglía/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Receptores OSM-LIF/metabolismo , Regulación hacia Arriba/efectos de los fármacos
6.
Eur Arch Otorhinolaryngol ; 279(5): 2391-2399, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34196734

RESUMEN

PURPOSE: To describe the suprameatal-transzygomatic root endoscopic approach (STEA) to the geniculate ganglion (GG), the labyrinthine facial nerve (FN) and epitympanum. METHODS: The feasibility and limits of the STEA, maintaining the integrity of the ossicular chain, were analysed. Ten human cadaveric ears were dissected. Step-by-step description of the technique and relevant measurements were taken during the approach. The visualization and surgical working field on the anterior and posterior medial epitympanum, GG, greater superficial petrosal nerve, the labyrinthine FN and suprageniculate area were evaluated. The range of motion through the approach and the rate of the decompression of the GG and the labyrinthine portion of the FN were assessed as well. CT-scan measurements were compared with those obtained during the dissection. RESULTS: A complete exploration of the epitympanum was possible in every specimen. Decompression of the GG and first portion of the FN was achieved without any trauma to the ossicular chain in nine ears. The endoscope movements were mainly limited by the distance between bony buttress-short process of the incus-tegmen. The working space, during GG and labyrinthine FN decompression, was limited by the distance between malleus head-medial epitympanic wall and malleus head-GG. Radiologic measurements were consistent with those obtained during the dissections. CONCLUSION: The STEA is a promising minimally invasive approach for decompression of the GG and FN's labyrinthine portion. The applications of this corridor include the exploration and surgery of the medial epitympanum, preserving the ossicular chain.


Asunto(s)
Oído Interno , Ganglio Geniculado , Oído Interno/diagnóstico por imagen , Oído Interno/cirugía , Oído Medio/cirugía , Endoscopía , Nervio Facial/diagnóstico por imagen , Nervio Facial/cirugía , Ganglio Geniculado/diagnóstico por imagen , Ganglio Geniculado/cirugía , Humanos
7.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35955927

RESUMEN

mitochondrial neuro-gastrointestinal encephalomyopathy (MNGIE) is a rare genetic disorder characterized by thymidine phosphorylase (TP) enzyme defect. The absence of TP activity induces the imbalance of mitochondrial nucleotide pool, leading to impaired mitochondrial DNA (mtDNA) replication and depletion. Since mtDNA is required to ensure oxidative phosphorylation, metabolically active tissues may not achieve sufficient energy production. The only effective life-saving approach in MNGIE has been the permanent replacement of TP via allogeneic hematopoietic stem cell or liver transplantation. However, the follow-up of transplanted patients showed that gut tissue changes do not revert and fatal complications, such as massive gastrointestinal bleeding, can occur. The purpose of this study was to clarify whether the reintroduction of TP after transplant can recover mtDNA copy number in a normal range. Using laser capture microdissection and droplet-digital-PCR, we assessed the mtDNA copy number in each layer of full-thickness ileal samples of a naive MNGIE cohort vs. controls and in a patient pre- and post-TP replacement. The treatment led to a significant recovery of gut tissue mtDNA amount, thus showing its efficacy. Our results indicate that a timely TP replacement is needed to maximize therapeutic success before irreversible degenerative tissue changes occur in MNGIE.


Asunto(s)
Trasplante de Hígado , Errores Innatos del Metabolismo , Encefalomiopatías Mitocondriales , ADN Mitocondrial/genética , Humanos , Íleon , Captura por Microdisección con Láser , Rayos Láser , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/terapia
8.
FASEB J ; 34(11): 15400-15416, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32959428

RESUMEN

MDS are characterized by anemia and transfusion requirements. Transfused patients frequently show iron overload that negatively affects hematopoiesis. Iron chelation therapy can be effective in these MDS cases, but the molecular consequences of this treatment need to be further investigated. That is why we studied the molecular features of iron effect and Deferasirox therapy on PI-PLCbeta1 inositide signaling, using hematopoietic cells and MDS samples. At baseline, MDS patients showing a positive response after iron chelation therapy displayed higher levels of PI-PLCbeta1/Cyclin D3/PKCalpha expression. During treatment, these responder patients, as well as hematopoietic cells treated with FeCl3 and Deferasirox, showed a specific reduction of PI-PLCbeta1/Cyclin D3/PKCalpha expression, indicating that this signaling pathway is targeted by Deferasirox. The treatment was also able to specifically decrease the production of ROS. This effect correlated with a reduction of IL-1A and IL-2, as well as Akt/mTOR phosphorylation. In contrast, cells exposed only to FeCl3 and cells from MDS patients refractory to Deferasirox showed a specific increase of ROS and PI-PLCbeta1/Cyclin D3/PKCalpha expression. All in all, our data show that PI-PLCbeta1 signaling is a target for iron-induced oxidative stress and suggest that baseline PI-PLCbeta1 quantification could predict iron chelation therapy response in MDS.


Asunto(s)
Ciclina D3/metabolismo , Sobrecarga de Hierro/complicaciones , Hierro/efectos adversos , Síndromes Mielodisplásicos/terapia , Estrés Oxidativo/efectos de los fármacos , Fosfolipasa C beta/metabolismo , Proteína Quinasa C-alfa/metabolismo , Anciano , Transfusión Sanguínea/estadística & datos numéricos , Ciclina D3/genética , Deferasirox/farmacología , Femenino , Regulación de la Expresión Génica , Humanos , Quelantes del Hierro/farmacología , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/patología , Fosfolipasa C beta/genética , Fosforilación , Proteína Quinasa C-alfa/genética , Transducción de Señal
9.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467674

RESUMEN

Erythropoiesis regulation is essential in normal physiology and pathology, particularly in myelodysplastic syndromes (MDS) and ß-thalassemia. Several signaling transduction processes, including those regulated by inositides, are implicated in erythropoiesis, and the latest MDS or ß-thalassemia preclinical and clinical studies are now based on their regulation. Among others, the main pathways involved are those regulated by transforming growth factor (TGF)-ß, which negatively regulates erythrocyte differentiation and maturation, and erythropoietin (EPO), which acts on the early-stage erythropoiesis. Also small mother against decapentaplegic (SMAD) signaling molecules play a role in pathology, and activin receptor ligand traps are being investigated for future clinical applications. Even inositide-dependent signaling, which is important in the regulation of cell proliferation and differentiation, is specifically associated with erythropoiesis, with phospholipase C (PLC) and phosphatidylinositol 3-kinase (PI3K) as key players that are becoming increasingly important as new promising therapeutic targets. Additionally, Roxadustat, a new erythropoiesis stimulating agent targeting hypoxia inducible factor (HIF), is under clinical development. Here, we review the role and function of the above-mentioned signaling pathways, and we describe the state of the art and new perspectives of erythropoiesis regulation in MDS and ß-thalassemia.


Asunto(s)
Eritropoyesis , Síndromes Mielodisplásicos/metabolismo , Transducción de Señal , Talasemia beta/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Ensayos Clínicos como Asunto , Eritropoyetina/metabolismo , Glicina/análogos & derivados , Glicina/farmacología , Hematínicos/uso terapéutico , Humanos , Factor 1 Inducible por Hipoxia/metabolismo , Isoquinolinas/farmacología , Ligandos , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Fosfolipasas de Tipo C/metabolismo
10.
Handb Exp Pharmacol ; 259: 291-308, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31889219

RESUMEN

Nuclear inositides have a specific subcellular distribution that is linked to specific functions; thus their regulation is fundamental both in health and disease. Emerging evidence shows that alterations in multiple inositide signalling pathways are involved in pathophysiology, not only in cancer but also in other diseases. Here, we give an overview of the main features of inositides in the cell, and we discuss their potential as new molecular therapeutic targets.


Asunto(s)
Núcleo Celular , Fosfatidilinositoles/fisiología , Transducción de Señal , Humanos
11.
Int J Mol Sci ; 21(15)2020 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-32722576

RESUMEN

An increasing number of reports suggests a significant involvement of the phosphoinositide (PI) cycle in cancer development and progression. Diacylglycerol kinases (DGKs) are very active in the PI cycle. They are a family of ten members that convert diacylglycerol (DAG) into phosphatidic acid (PA), two-second messengers with versatile cellular functions. Notably, some DGK isoforms, such as DGKα, have been reported to possess promising therapeutic potential in cancer therapy. However, further studies are needed in order to better comprehend their involvement in cancer. In this review, we highlight that DGKs are an essential component of the PI cycle that localize within several subcellular compartments, including the nucleus and plasma membrane, together with their PI substrates and that they are involved in mediating major cancer cell mechanisms such as growth and metastasis. DGKs control cancer cell survival, proliferation, and angiogenesis by regulating Akt/mTOR and MAPK/ERK pathways. In addition, some DGKs control cancer cell migration by regulating the activities of the Rho GTPases Rac1 and RhoA.


Asunto(s)
Movimiento Celular , Diacilglicerol Quinasa/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimología , Animales , Diglicéridos/metabolismo , Humanos , Neoplasias/patología
12.
Int J Mol Sci ; 21(7)2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32276377

RESUMEN

Phosphoinositides (PI) form just a minor portion of the total phospholipid content in cells but are significantly involved in cancer development and progression. In several cancer types, phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] play significant roles in regulating survival, proliferation, invasion, and growth of cancer cells. Phosphoinositide-specific phospholipase C (PLC) catalyze the generation of the essential second messengers diacylglycerol (DAG) and inositol 1,4,5 trisphosphate (InsP3) by hydrolyzing PtdIns(4,5)P2. DAG and InsP3 regulate Protein Kinase C (PKC) activation and the release of calcium ions (Ca2+) into the cytosol, respectively. This event leads to the control of several important biological processes implicated in cancer. PLCs have been extensively studied in cancer but their regulatory roles in the oncogenic process are not fully understood. This review aims to provide up-to-date knowledge on the involvement of PLCs in cancer. We focus specifically on PLCß, PLCγ, PLCδ, and PLCε isoforms due to the numerous evidence of their involvement in various cancer types.


Asunto(s)
Neoplasias/enzimología , Fosfatidilinositoles/metabolismo , Fosfoinositido Fosfolipasa C/metabolismo , Transducción de Señal , Animales , Diglicéridos/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/fisiopatología , Proteína Quinasa C/metabolismo
13.
J Lipid Res ; 60(2): 312-317, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30287524

RESUMEN

Phosphoinositide-specific phospholipases C (PI-PLCs) are involved in signaling pathways related to critical cellular functions, such as cell cycle regulation, cell differentiation, and gene expression. Nuclear PI-PLCs have been studied as key enzymes, molecular targets, and clinical prognostic/diagnostic factors in many physiopathologic processes. Here, we summarize the main studies about nuclear PI-PLCs, specifically, the imbalance of isozymes such as PI-PLCß1 and PI-PLCζ, in cerebral, hematologic, neuromuscular, and fertility disorders. PI-PLCß1 and PI-PLCÉ£1 affect epilepsy, depression, and bipolar disorder. In the brain, PI-PLCß1 is involved in endocannabinoid neuronal excitability and is a potentially novel signature gene for subtypes of high-grade glioma. An altered quality or quantity of PI-PLCζ contributes to sperm defects that result in infertility, and PI-PLCß1 aberrant inositide signaling contributes to both hematologic and degenerative muscle diseases. Understanding the mechanisms behind PI-PLC involvement in human pathologies may help identify new strategies for personalized therapies of these conditions.


Asunto(s)
Encefalopatías/enzimología , Núcleo Celular/enzimología , Enfermedades Hematológicas/enzimología , Infertilidad/enzimología , Enfermedades Neuromusculares/enzimología , Fosfolipasas de Tipo C/metabolismo , Animales , Encefalopatías/patología , Enfermedades Hematológicas/patología , Humanos , Infertilidad/patología , Isoenzimas/metabolismo , Enfermedades Neuromusculares/patología
14.
FASEB J ; 32(2): 681-692, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28970249

RESUMEN

PI-PLCß1 is involved in cell proliferation, differentiation, and myelodysplastic syndrome (MDS) pathogenesis. Moreover, the increased activity of PI-PLCß1 reduces the expression of PKC-α, which, in turn, delays the cell proliferation and is linked to erythropoiesis. Lenalidomide is currently used in low-risk patients with MDS and del(5q), where it can suppress the del(5q) clone and restore normal erythropoiesis. In this study, we analyzed the effect of lenalidomide on 16 patients with low-risk del(5q) MDS, as well as del(5q) and non-del(5q) hematopoietic cell lines, mainly focusing on erythropoiesis, cell cycle, and PI-PLCß1/PKC-α signaling. Overall, 11 patients were evaluated clinically, and 10 (90%) had favorable responses; the remaining case had a stable disease. At a molecular level, both responder patients and del(5q) cells showed a specific induction of erythropoiesis, with a reduced γ/ß-globin ratio, an increase in glycophorin A, and a nuclear translocation of PKC-α. Moreover, lenalidomide could induce a selective G0/G1 arrest of the cell cycle in del(5q) cells, slowing down the rate proliferation in those cells. Altogether, our results could not only better explain the role of PI-PLCß1/PKC-α signaling in erythropoiesis but also lead to a better comprehension of the lenalidomide effect on del(5q) MDS and pave the way to innovative, targeted therapies.-Poli, A., Ratti, S., Finelli, C., Mongiorgi, S., Clissa, C., Lonetti, A., Cappellini, A., Catozzi, A., Barraco, M., Suh, P.-G., Manzoli, L., McCubrey, J. A., Cocco, L., Follo, M. Y. Nuclear translocation of PKC-α is associated with cell cycle arrest and erythroid differentiation in myelodysplastic syndromes (MDSs).


Asunto(s)
Diferenciación Celular , Núcleo Celular/enzimología , Células Eritroides/enzimología , Eritropoyesis , Puntos de Control de la Fase G1 del Ciclo Celular , Síndromes Mielodisplásicos/enzimología , Proteína Quinasa C-alfa/metabolismo , Transducción de Señal , Transporte Activo de Núcleo Celular , Anciano , Anciano de 80 o más Años , Línea Celular , Núcleo Celular/genética , Núcleo Celular/patología , Células Eritroides/patología , Femenino , Humanos , Masculino , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Proteína Quinasa C-alfa/genética , Fase de Descanso del Ciclo Celular
15.
J Minim Invasive Gynecol ; 26(7): 1340-1345, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30708116

RESUMEN

STUDY OBJECTIVE: To clarify the relationship of hypogastric nerves (HNs) with several pelvic anatomic landmarks and to assess any anatomic differences between the 2 sides of the pelvis, both in cadaveric and in vivo dissections. DESIGN: Prospective observational study. SETTING: An anatomic theater for cadaveric dissections and a university hospital for in vivo laparoscopy. PATIENTS: Five nulliparous female cadavers underwent laparotomic dissection; 10 nulliparous patients underwent laparoscopic surgery for rectosigmoid endometriosis without posterolateral parametrial infiltration. INTERVENTIONS: Measurements of the closest distance between HNs and ureters, the midsagittal plane, the midcervical plane, and uterosacral ligaments on both hemipelvises. A comparison of anatomic data of the 2 hemipelvises was conducted. MEASUREMENTS AND MAIN RESULTS: The right and left HNs were identified in all specimens, both on cadavers and in vivo dissections. A wide anatomic variability was reported. Regarding the differences between the 2 hemipelvises, we found that the right HN was significantly (p <.001) farther to the ureter (mean = 14.5 mm; range, 10-25 mm) than the left one (mean = 8.6 mm; range, 7-12 mm). The HN was closer to the midsagittal plane on the right side (mean = 14.6 mm; range, 12-17 mm) than on the left side (mean = 21.6 mm; range, 19-25 mm). The midcervical plane was found 2.7 mm (range, 2-4 mm) to the left of the midsagittal one. The right HN was found to be nonsignificantly closer to the midcervical plane and the uterosacral ligament on the right side than on the left side (p >.05). CONCLUSIONS: Despite a wide anatomic variability of position and appearance, the HNs are reproducibly identifiable using an "interfascial" technique and considering the ureters and uterosacral ligaments as anatomic landmarks.


Asunto(s)
Sistema Nervioso Autónomo/fisiología , Plexo Hipogástrico/anatomía & histología , Complicaciones Intraoperatorias/prevención & control , Tratamientos Conservadores del Órgano/métodos , Pelvis/cirugía , Adulto , Cadáver , Disección , Femenino , Humanos , Plexo Hipogástrico/lesiones , Laparoscopía/métodos , Pelvis/inervación , Estudios Prospectivos
16.
Int J Mol Sci ; 20(8)2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31022972

RESUMEN

Stem cells are undifferentiated cells that can give rise to several different cell types and can self-renew. Given their ability to differentiate into different lineages, stem cells retain huge therapeutic potential for regenerative medicine. Therefore, the understanding of the signaling pathways involved in stem cell pluripotency maintenance and differentiation has a paramount importance in order to understand these biological processes and to develop therapeutic strategies. In this review, we focus on phosphoinositide 3 kinase (PI3K) since its signaling pathway regulates many cellular processes, such as cell growth, proliferation, survival, and cellular transformation. Precisely, in human stem cells, the PI3K cascade is involved in different processes from pluripotency and induced pluripotent stem cell (iPSC) reprogramming to mesenchymal and oral mesenchymal differentiation, through different and interconnected mechanisms.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Células Madre Embrionarias Humanas/citología , Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/citología , Fosfatidilinositol 3-Quinasa/metabolismo , Transducción de Señal , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/metabolismo
17.
J Cell Physiol ; 233(3): 1796-1811, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28777460

RESUMEN

Despite remarkable progress in polychemotherapy protocols, pediatric B-cell acute lymphoblastic leukemia (B-ALL) remains fatal in around 20% of cases. Hence, novel targeted therapies are needed for patients with poor prognosis. Glucocorticoids (GCs) are drugs commonly administrated for B-ALL treatment. Activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin signaling pathway is frequently observed in B-ALL and contributes to GC-resistance. Here, we analyzed for the first time to our knowledge, the therapeutic potential of pan and isoform-selective PI3K p110 inhibitors, alone or combined with dexamethasone (DEX), in B-ALL leukemia cell lines and patient samples. We found that a pan PI3K p110 inhibitor displayed the most powerful cytotoxic effects in B-ALL cells, by inducing cell cycle arrest and apoptosis. Both a pan PI3K p110 inhibitor and a dual γ/δ PI3K p110 inhibitor sensitized B-ALL cells to DEX by restoring nuclear translocation of the GC receptor and counteracted stroma-induced DEX-resistance. Finally, gene expression analysis documented that, on one hand the combination consisting of a pan PI3K p110 inhibitor and DEX strengthened the DEX-induced up- or down-regulation of several genes involved in apoptosis, while on the other, it rescued the effects of genes that might be involved in GC-resistance. Overall, our findings strongly suggest that PI3K p110 inhibition could be a promising strategy for treating B-ALL patients by improving GC therapeutic effects and/or overcoming GC-resistance.


Asunto(s)
Antineoplásicos/farmacología , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Dexametasona/farmacología , Glucocorticoides/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Linfocitos B/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Niño , Preescolar , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Isoquinolinas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Purinas/farmacología , Quinazolinonas/farmacología , Quinoxalinas/farmacología , Tiazolidinedionas/farmacología , Triazinas/farmacología
18.
Acta Neurochir (Wien) ; 160(12): 2349-2361, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30382359

RESUMEN

INTRODUCTION: Recently, an alternative endoscopic endonasal approach to Meckel's cave (MC) tumors has been proposed. To date, few studies have evaluated the results of this route. The aim of our study was to evaluate long-term surgical and clinical outcome associated with this technique in a cohort of patients with intrinsic MC tumors. METHODS: All patients with MC tumors treated at out institution by endoscopic endonasal approach (EEA) between 2002 and 2016 were included. Patients underwent brain MRI, CT angiography, and neurological evaluation before surgery. Complications were considered based on the surgical records. All examinations were repeated after 3 and 12 months, then annually. The median follow-up was of 44.1 months (range 16-210). RESULTS: The series included 8 patients (4 F): 5 neuromas, 1 meningioma, 1 chondrosarcoma, and 1 epidermoid cyst. The median age at treatment was 54.5 years (range 21-70). Three tumors presented with a posterior fossa extension. Radical removal of the MC portion of the tumor was achieved in 7 out of 8 cases. Two patients developed a permanent and transitory deficit of the sixth cranial nerve, respectively. No tumor recurrence was observed at follow-up. CONCLUSION: In this preliminary series, the EEA appeared an effective and safe approach to MC tumors. The technique could be advantageous to treat tumors located in the antero-medial aspects of MC displacing the trigeminal structures posteriorly and laterally. A favorable index of an adequate working space for this approach is represented by the ICA medialization, while tumor extension to the posterior fossa represents the main limitation to radical removal of this route.


Asunto(s)
Neoplasias Meníngeas/cirugía , Meningioma/cirugía , Cirugía Endoscópica por Orificios Naturales/métodos , Complicaciones Posoperatorias/epidemiología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Cirugía Endoscópica por Orificios Naturales/efectos adversos , Nariz/cirugía
19.
J Cell Physiol ; 232(9): 2550-2557, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27731506

RESUMEN

Phosphatidylinositol (PI) signaling is an essential regulator of cell motility and proliferation. A portion of PI metabolism and signaling takes place in the nuclear compartment of eukaryotic cells, where an array of kinases and phosphatases localize and modulate PI. Among these, Diacylglycerol Kinases (DGKs) are a class of phosphotransferases that phosphorylate diacylglycerol and induce the synthesis of phosphatidic acid. Nuclear DGKalpha modulates cell cycle progression, and its activity or expression can lead to changes in the phosphorylated status of the Retinoblastoma protein, thus, impairing G1/S transition and, subsequently, inducing cell cycle arrest, which is often uncoupled with apoptosis or autophagy induction. Here we report for the first time not only that the DGKalpha isoform is highly expressed in the nuclei of human erythroleukemia cell line K562, but also that its nuclear activity drives K562 cells through the G1/S transition during cell cycle progression. J. Cell. Physiol. 232: 2550-2557, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Núcleo Celular/enzimología , Proliferación Celular , Diacilglicerol Quinasa/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular , Leucemia Eritroblástica Aguda/enzimología , Núcleo Celular/efectos de los fármacos , Núcleo Celular/patología , Proliferación Celular/efectos de los fármacos , Diacilglicerol Quinasa/antagonistas & inhibidores , Diacilglicerol Quinasa/genética , Relación Dosis-Respuesta a Droga , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Isoenzimas , Células K562 , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/patología , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Factores de Tiempo , Transfección
20.
J Cell Biochem ; 118(8): 1969-1978, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28106288

RESUMEN

The existence of an independent nuclear inositide pathway distinct from the cytoplasmic one has been demonstrated in different physiological systems and in diseases. In this prospect we analyze the role of PI-PLCß1 nuclear isoform in relation to the cell cycle regulation, the cell differentiation, and different physiopathological pathways focusing on the importance of the nuclear localization from both molecular and clinical point of view. PI-PLCß1 is essential for G1/S transition through DAG and Cyclin D3 and plays also a central role in G2/M progression through Cyclin B1 and PKCα. In the differentiation process of C2C12 cells PI-PLCß1 increases in both myogenic differentiation and osteogenic differentiation. PI-PLCß1 and Cyclin D3 reduction has been observed in Myotonic Dystrophy (DM) suggesting a pivotal role of these enzymes in DM physiopathology. PI-PLCß1 is also involved in adipogenesis through a double phase mechanism. Moreover, PI-PLCß1 plays a key role in the normal hematopoietic differentiation where it seems to decrease in erythroid differentiation and increase in myeloid differentiation. In Myelodysplastic Syndromes (MDS) PI-PLCß1 has a genetic and epigenetic relevance and it is related to MDS patients' risk of Acute Myeloid Leukemia (AML) evolution. In MDS patients PI-PLCß1 seems to be also a therapeutic predictive outcome marker. In the central nervous system, PI-PLCß1 seems to be involved in different pathways in both brain cortex development and synaptic plasticity related to different diseases. Another PI-PLC isozyme that could be related to nuclear activities is PI-PLCζ that is involved in infertility processes. J. Cell. Biochem. 118: 1969-1978, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Núcleo Celular/metabolismo , Fosfatos de Inositol/metabolismo , Síndromes Mielodisplásicos/genética , Células Mieloides/metabolismo , Fosfolipasa C beta/genética , Adipocitos/metabolismo , Adipocitos/patología , Animales , Encefalopatías/genética , Encefalopatías/metabolismo , Encefalopatías/patología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Humanos , Infertilidad/genética , Infertilidad/metabolismo , Infertilidad/patología , Células Musculares/metabolismo , Células Musculares/patología , Síndromes Mielodisplásicos/metabolismo , Síndromes Mielodisplásicos/patología , Células Mieloides/patología , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Distrofia Miotónica/patología , Osteoblastos/metabolismo , Osteoblastos/patología , Fosfolipasa C beta/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA