Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(31): 15392-15397, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31311862

RESUMEN

Mesenchymal stem cell (MSC) therapies demonstrate particular promise in ameliorating diseases of immune dysregulation but are hampered by short in vivo cell persistence and inconsistencies in phenotype. Here, we demonstrate that biomaterial encapsulation into alginate using a microfluidic device could substantially increase in vivo MSC persistence after intravenous (i.v.) injection. A combination of cell cluster formation and subsequent cross-linking with polylysine led to an increase in injected MSC half-life by more than an order of magnitude. These modifications extended persistence even in the presence of innate and adaptive immunity-mediated clearance. Licensing of encapsulated MSCs with inflammatory cytokine pretransplantation increased expression of immunomodulatory-associated genes, and licensed encapsulates promoted repopulation of recipient blood and bone marrow with allogeneic donor cells after sublethal irradiation by a ∼2-fold increase. The ability of microgel encapsulation to sustain MSC survival and increase overall immunomodulatory capacity may be applicable for improving MSC therapies in general.


Asunto(s)
Encapsulación Celular , Inmunomodulación , Células Madre Mesenquimatosas/citología , Alginatos/química , Animales , Células Cultivadas , Regulación de la Expresión Génica , Hematopoyesis/genética , Inmunidad , Inmunomodulación/genética , Ratones Endogámicos BALB C , Factores de Tiempo , Trasplante Homólogo
2.
Small ; 14(9)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29334173

RESUMEN

Controlled encapsulation and pairing of single cells within a confined 3D matrix can enable the replication of the highly ordered cellular structure of human tissues. Microgels with independently controlled compartments that can encapsulate cells within separately confined hydrogel matrices would provide precise control over the route of pairing single cells. Here, a one-step microfluidic method is presented to generate monodisperse multicompartment microgels that can be used as a 3D matrix to pair single cells in a highly biocompatible manner. A method is presented to induce microgels formation on chip, followed by direct extraction of the microgels from oil phase, thereby avoiding prolonged exposure of the microgels to the oil. It is further demonstrated that by entrapping stem cells with niche cells within separate but adjacent compartments of the microgels, it can create complex stem cell niche microenvironments in a controlled manner, which can serve as a useful tool for the study of cell-cell interactions. This microfluidic technique represents a significant step toward high-throughput single cells encapsulation and pairing for the study of intercellular communications at single cell level, which is of significant importance for cell biology, stem cell therapy, and tissue engineering.


Asunto(s)
Hidrogeles/síntesis química , Microfluídica/métodos , Técnicas Analíticas Microfluídicas , Ingeniería de Tejidos/métodos
3.
Nat Mater ; 16(2): 236-243, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27798621

RESUMEN

Existing techniques to encapsulate cells into microscale hydrogels generally yield high polymer-to-cell ratios and lack control over the hydrogel's mechanical properties. Here, we report a microfluidic-based method for encapsulating single cells in an approximately six-micrometre layer of alginate that increases the proportion of cell-containing microgels by a factor of ten, with encapsulation efficiencies over 90%. We show that in vitro cell viability was maintained over a three-day period, that the microgels are mechanically tractable, and that, for microscale cell assemblages of encapsulated marrow stromal cells cultured in microwells, osteogenic differentiation of encapsulated cells depends on gel stiffness and cell density. We also show that intravenous injection of singly encapsulated marrow stromal cells into mice delays clearance kinetics and sustains donor-derived soluble factors in vivo. The encapsulation of single cells in tunable hydrogels should find use in a variety of tissue engineering and regenerative medicine applications.


Asunto(s)
Hidrogeles/química , Nicho de Células Madre , Trasplante de Células Madre/instrumentación , Células Madre/citología , Ingeniería de Tejidos/instrumentación , Andamios del Tejido , Animales , Células Cultivadas , Diseño de Equipo , Humanos , Ratones , Trasplante de Células Madre/métodos , Células Madre/fisiología , Ingeniería de Tejidos/métodos
4.
Proc Natl Acad Sci U S A ; 112(47): 14452-9, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26598661

RESUMEN

Organ and tissue loss through disease and injury motivate the development of therapies that can regenerate tissues and decrease reliance on transplantations. Regenerative medicine, an interdisciplinary field that applies engineering and life science principles to promote regeneration, can potentially restore diseased and injured tissues and whole organs. Since the inception of the field several decades ago, a number of regenerative medicine therapies, including those designed for wound healing and orthopedics applications, have received Food and Drug Administration (FDA) approval and are now commercially available. These therapies and other regenerative medicine approaches currently being studied in preclinical and clinical settings will be covered in this review. Specifically, developments in fabricating sophisticated grafts and tissue mimics and technologies for integrating grafts with host vasculature will be discussed. Enhancing the intrinsic regenerative capacity of the host by altering its environment, whether with cell injections or immune modulation, will be addressed, as well as methods for exploiting recently developed cell sources. Finally, we propose directions for current and future regenerative medicine therapies.


Asunto(s)
Medicina Regenerativa , Animales , Materiales Biocompatibles/uso terapéutico , Células Madre Embrionarias/fisiología , Células Madre Hematopoyéticas/fisiología , Humanos , Sistema Inmunológico/fisiología , Medicina Regenerativa/tendencias , Ingeniería de Tejidos
5.
Lab Chip ; 22(10): 1962-1970, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35437554

RESUMEN

We present a new cell culture technology for large-scale mechanobiology studies capable of generating and applying optically controlled uniform compression on single cells in 3D. Mesenchymal stem cells (MSCs) are individually encapsulated inside an optically triggered nanoactuator-alginate hybrid biomaterial using microfluidics, and the encapsulating network isotropically compresses the cell upon activation by light. The favorable biomolecular properties of alginate allow cell culture in vitro up to a week. The mechanically active microgels are capable of generating up to 15% compressive strain and forces reaching 400 nN. As a proof of concept, we demonstrate the use of the mechanically active cell culture system in mechanobiology by subjecting singly encapsulated MSCs to optically generated isotropic compression and monitoring changes in intracellular calcium intensity.


Asunto(s)
Células Madre Mesenquimatosas , Microgeles , Alginatos , Biofisica , Técnicas de Cultivo de Célula
6.
Lab Chip ; 22(18): 3565-3566, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-35975902

RESUMEN

Correction for 'Actuated 3D microgels for single cell mechanobiology' by Berna Özkale et al., Lab Chip, 2022, 22, 1962-1970, https://doi.org/10.1039/D2LC00203E.

7.
Nat Biotechnol ; 40(4): 539-545, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34711989

RESUMEN

The ability to control translation of endogenous or exogenous RNAs in eukaryotic cells would facilitate a variety of biotechnological applications. Current strategies are limited by low fold changes in transgene output and the size of trigger RNAs (trRNAs). Here we introduce eukaryotic toehold switches (eToeholds) as modular riboregulators. eToeholds contain internal ribosome entry site sequences and form inhibitory loops in the absence of a specific trRNA. When the trRNA is present, eToeholds anneal to it, disrupting the inhibitory loops and allowing translation. Through optimization of RNA annealing, we achieved up to 16-fold induction of transgene expression in mammalian cells. We demonstrate that eToeholds can discriminate among viral infection status, presence or absence of gene expression and cell types based on the presence of exogenous or endogenous RNA transcripts.


Asunto(s)
Biosíntesis de Proteínas , ARN , Animales , Mamíferos/genética , Biosíntesis de Proteínas/genética , ARN Viral/genética
8.
Nat Mater ; 9(6): 518-26, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20418863

RESUMEN

Stem cells sense and respond to the mechanical properties of the extracellular matrix. However, both the extent to which extracellular-matrix mechanics affect stem-cell fate in three-dimensional microenvironments and the underlying biophysical mechanisms are unclear. We demonstrate that the commitment of mesenchymal stem-cell populations changes in response to the rigidity of three-dimensional microenvironments, with osteogenesis occurring predominantly at 11-30 kPa. In contrast to previous two-dimensional work, however, cell fate was not correlated with morphology. Instead, matrix stiffness regulated integrin binding as well as reorganization of adhesion ligands on the nanoscale, both of which were traction dependent and correlated with osteogenic commitment of mesenchymal stem-cell populations. These findings suggest that cells interpret changes in the physical properties of adhesion substrates as changes in adhesion-ligand presentation, and that cells themselves can be harnessed as tools to mechanically process materials into structures that feed back to manipulate their fate.


Asunto(s)
Matriz Extracelular/fisiología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Células Madre/citología , Células Madre/fisiología , Alginatos , Animales , Fenómenos Biomecánicos , Biofisica , Técnicas de Cultivo de Célula , Trasplante de Células/fisiología , Matriz Extracelular/ultraestructura , Humanos , Hidrogeles , Integrinas/fisiología , Microscopía/métodos , Osteogénesis/fisiología
9.
Bio Protoc ; 11(4): e3920, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33732807

RESUMEN

Current methods to obtain mesenchymal stem cells (MSCs) involve sampling, culturing, and expanding of primary MSCs from adipose, bone marrow, and umbilical cord tissues. However, the drawbacks are the limited numbers of total cells in MSC pools, and their decaying stemness during in vitro expansion. As an alternative resource, recent ceiling culture methods allow the generation of dedifferentiated fat cells (DFATs) from mature adipocytes. Nevertheless, this process of spontaneous dedifferentiation of mature adipocytes is laborious and time-consuming. This paper describes a modified protocol for in vitro dedifferentiation of adipocytes by employing an additional physical stimulation, which takes advantage of augmenting the stemness-related Wnt/ß-catenin signaling. Specifically, this protocol utilizes a polyethylene glycol (PEG)-containing hypertonic medium to introduce extracellular physical stimulation to obtain higher efficiency and introduce a simpler procedure for adipocyte dedifferentiation.

10.
Sci Adv ; 7(32)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34362739

RESUMEN

The COVID-19 pandemic highlights the need for diagnostics that can be rapidly adapted and deployed in a variety of settings. Several SARS-CoV-2 variants have shown worrisome effects on vaccine and treatment efficacy, but no current point-of-care (POC) testing modality allows their specific identification. We have developed miSHERLOCK, a low-cost, CRISPR-based POC diagnostic platform that takes unprocessed patient saliva; extracts, purifies, and concentrates viral RNA; performs amplification and detection reactions; and provides fluorescent visual output with only three user actions and 1 hour from sample input to answer out. miSHERLOCK achieves highly sensitive multiplexed detection of SARS-CoV-2 and mutations associated with variants B.1.1.7, B.1.351, and P.1. Our modular system enables easy exchange of assays to address diverse user needs and can be rapidly reconfigured to detect different viruses and variants of concern. An adjunctive smartphone application enables output quantification, automated interpretation, and the possibility of remote, distributed result reporting.

11.
Nat Biomed Eng ; 4(1): 40-51, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31937942

RESUMEN

Acute myeloid leukaemia (AML) is a malignancy of haematopoietic origin that has limited therapeutic options. The standard-of-care cytoreductive chemotherapy depletes AML cells to induce remission, but is infrequently curative. An immunosuppressive AML microenvironment in the bone marrow and the paucity of suitable immunotherapy targets limit the induction of effective immune responses. Here, in mouse models of AML, we show that a macroporous-biomaterial vaccine that delivers the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF), the Toll-like-receptor-9 agonist cytosine-guanosine oligodeoxynucleotide and one or multiple leukaemia antigens (in the form of a defined peptide antigen, cell lysates or antigens sourced from AML cells recruited in vivo) induces local immune-cell infiltration and activated dendritic cells, evoking a potent anti-AML response. The biomaterial-based vaccine prevented the engraftment of AML cells when administered as a prophylactic and when combined with chemotherapy, and eradicated established AML even in the absence of a defined vaccine antigen. Biomaterial-based AML vaccination can induce potent immune responses, deplete AML cells and prevent disease relapse.


Asunto(s)
Vacunas contra el Cáncer/administración & dosificación , Leucemia Mieloide Aguda/tratamiento farmacológico , Animales , Materiales Biocompatibles , Médula Ósea/efectos de los fármacos , Médula Ósea/inmunología , Modelos Animales de Enfermedad , Desarrollo de Medicamentos , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/administración & dosificación , Leucemia Mieloide Aguda/inmunología , Ratones Endogámicos C57BL , Receptor Toll-Like 9/agonistas
12.
Nat Protoc ; 15(9): 3030-3063, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32807909

RESUMEN

Materials that sense and respond to biological signals in their environment have a broad range of potential applications in drug delivery, medical devices and diagnostics. Nucleic acids are important biological cues that encode information about organismal identity and clinically relevant phenotypes such as drug resistance. We recently developed a strategy to design nucleic acid-responsive materials using the CRISPR-associated nuclease Cas12a as a user-programmable sensor and material actuator. This approach improves on the sensitivity of current DNA-responsive materials while enabling their rapid repurposing toward new sequence targets. Here, we provide a comprehensive resource for the design, synthesis and actuation of CRISPR-responsive hydrogels. First, we provide guidelines for the synthesis of Cas12a guide RNAs (gRNAs) for in vitro applications. We then outline methods for the synthesis of both polyethylene glycol-DNA (PEG-DNA) and polyacrylamide-DNA (PA-DNA) hydrogels, as well as their controlled degradation using Cas12a for the release of cargos, including small molecules, enzymes, nanoparticles and living cells within hours. Finally, we detail the design and assembly of microfluidic paper-based devices that use Cas12a-sensitive hydrogels to convert DNA inputs into a variety of visual and electronic readouts for use in diagnostics. Following the initial validation of the gRNA and Cas12a components (1 d), the synthesis and testing of either PEG-DNA or PA-DNA hydrogels require 3-4 d of laboratory time. Optional extensions, including the release of primary human cells or the design of the paper-based diagnostic, require an additional 2-3 d each.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Técnicas y Procedimientos Diagnósticos , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Materiales Inteligentes/química , Resinas Acrílicas/química , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Proteínas Asociadas a CRISPR/metabolismo , ADN/química , ADN/genética , Endodesoxirribonucleasas/metabolismo , Humanos , Células K562 , Polietilenglicoles/química , ARN Guía de Kinetoplastida/genética
13.
Sci Adv ; 6(4): eaax5611, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32010780

RESUMEN

Dysregulated physical stresses are generated during tumorigenesis that affect the surrounding compliant tissues including adipocytes. However, the effect of physical stressors on the behavior of adipocytes and their cross-talk with tumor cells remain elusive. Here, we demonstrate that compression of cells, resulting from various types of physical stresses, can induce dedifferentiation of adipocytes via mechanically activating Wnt/ß-catenin signaling. The compression-induced dedifferentiated adipocytes (CiDAs) have a distinct transcriptome profile, long-term self-renewal, and serial clonogenicity, but do not form teratomas. We then show that CiDAs notably enhance human mammary adenocarcinoma proliferation both in vitro and in a xenograft model, owing to myofibrogenesis of CiDAs in the tumor-conditioned environment. Collectively, our results highlight unique physical interplay in the tumor ecosystem; tumor-induced physical stresses stimulate de novo generation of CiDAs, which feedback to tumor growth.


Asunto(s)
Adipocitos/metabolismo , Adipocitos/patología , Desdiferenciación Celular , Transformación Celular Neoplásica , Neoplasias de Tejido Adiposo/etiología , Neoplasias de Tejido Adiposo/metabolismo , Estrés Mecánico , Animales , Desdiferenciación Celular/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Humanos , Ratones , Neoplasias de Tejido Adiposo/patología , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Science ; 365(6455): 780-785, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31439791

RESUMEN

Stimuli-responsive materials activated by biological signals play an increasingly important role in biotechnology applications. We exploit the programmability of CRISPR-associated nucleases to actuate hydrogels containing DNA as a structural element or as an anchor for pendant groups. After activation by guide RNA-defined inputs, Cas12a cleaves DNA in the gels, thereby converting biological information into changes in material properties. We report four applications: (i) branched poly(ethylene glycol) hydrogels releasing DNA-anchored compounds, (ii) degradable polyacrylamide-DNA hydrogels encapsulating nanoparticles and live cells, (iii) conductive carbon-black-DNA hydrogels acting as degradable electrical fuses, and (iv) a polyacrylamide-DNA hydrogel operating as a fluidic valve with an electrical readout for remote signaling. These materials allow for a range of in vitro applications in tissue engineering, bioelectronics, and diagnostics.


Asunto(s)
Proteínas Bacterianas/química , Materiales Biocompatibles/química , Técnicas Biosensibles , Proteínas Asociadas a CRISPR/química , ADN/química , Endodesoxirribonucleasas/química , Hidrogeles/química , Patología Molecular , Ingeniería de Tejidos , Resinas Acrílicas/química , Células/química , Reactivos de Enlaces Cruzados/química , División del ADN , ADN de Cadena Simple/química , Dispositivos Laboratorio en un Chip , Nanopartículas/química , Permeabilidad , Polietilenglicoles/química
15.
Nat Biotechnol ; 37(3): 293-302, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30742125

RESUMEN

Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for multiple disorders, but deficiency and dysregulation of T cells limit its utility. Here we report a biomaterial-based scaffold that mimics features of T cell lymphopoiesis in the bone marrow. The bone marrow cryogel (BMC) releases bone morphogenetic protein-2 to recruit stromal cells and presents the Notch ligand Delta-like ligand-4 to facilitate T cell lineage specification of mouse and human hematopoietic progenitor cells. BMCs subcutaneously injected in mice at the time of HSCT enhanced T cell progenitor seeding of the thymus, T cell neogenesis and diversification of the T cell receptor repertoire. Peripheral T cell reconstitution increased ~6-fold in mouse HSCT and ~2-fold in human xenogeneic HSCT. Furthermore, BMCs promoted donor CD4+ regulatory T cell generation and improved survival after allogeneic HSCT. In comparison to adoptive transfer of T cell progenitors, BMCs increased donor chimerism, T cell generation and antigen-specific T cell responses to vaccination. BMCs may provide an off-the-shelf approach for enhancing T cell regeneration and mitigating graft-versus-host disease in HSCT.


Asunto(s)
Trasplante de Médula Ósea , Enfermedad Injerto contra Huésped/inmunología , Trasplante de Células Madre Hematopoyéticas , Linfocitos T Reguladores/inmunología , Andamios del Tejido , Traslado Adoptivo/métodos , Animales , Médula Ósea , Quimerismo , Enfermedad Injerto contra Huésped/patología , Enfermedad Injerto contra Huésped/terapia , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/inmunología , Humanos , Ratones , Linfocitos T Reguladores/citología , Trasplante Heterólogo/métodos , Trasplante Homólogo
16.
Lab Chip ; 17(4): 727-737, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28154867

RESUMEN

Single cell-laden three-dimensional (3D) microgels that can serve to mimic stem cell niches in vitro, and are therefore termed microniches, can be efficiently fabricated by droplet-based microfluidics. In this technique an aqueous polymer solution along with a highly diluted cell solution is injected into a microfluidic device to create monodisperse pre-microgel droplets that are then solidified by a polymer crosslinking reaction to obtain monodisperse single cell-laden microniches. However, problems limiting this approach studying the fate of single cells include Poisson encapsulation statistics that result in mostly empty microniches, and cells egressing from the microniches during subsequent cell culture. Here, we present a strategy to bypass Poisson encapsulation statistics in synthetic microniches by selective crosslinking of only cell-laden pre-microgel droplets. Furthermore, we show that we can position cells in the center of the microniches, and that even in protease-sensitive microniches this greatly reduces cell egress. Collectively, we present the development of a versatile protocol that allows for unprecedented efficiency in creation of synthetic protease-sensitive microniches for probing single stem cell fate in 3D.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Microambiente Celular/fisiología , Técnicas Analíticas Microfluídicas/métodos , Análisis de la Célula Individual/métodos , Animales , Línea Celular , Ratones , Péptido Hidrolasas
17.
Lab Chip ; 17(14): 2481-2490, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28627581

RESUMEN

Controlled self-assembly of cell-encapsulating microscale polymeric hydrogels (microgels) could be advantageous in a variety of tissue engineering and regenerative medicine applications. Here, a method of assembly by chemical modification of alginate polymer with binding pair molecules (BPM) was explored. Alginate was modified with several types of BPM, specifically biotin and streptavidin and click chemistry compounds, and fabricated into 25-30 µm microgels using a microfluidic platform. These microgels were demonstrated to self-assemble under physiological conditions. By combining complementary microgels at a high ratio, size-defined assemblages were created, and the effects of BPM type and assembly method on the number of microgels per assemblage and packing density were determined. Furthermore, a magnetic process was developed to separate assemblages from single microgels, and allow formation of multilayer spheroids. Finally, cells were singly encapsulated into alginate microgels and assembled using BPM-modified alginate, suggesting potential applications in regenerative medicine.


Asunto(s)
Alginatos/química , Materiales Biocompatibles , Hidrogeles , Animales , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Biotina/química , Biotina/metabolismo , Línea Celular , Técnicas Citológicas , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Hidrogeles/síntesis química , Hidrogeles/química , Hidrogeles/metabolismo , Ensayo de Materiales , Ratones , Tamaño de la Partícula , Estreptavidina/química , Estreptavidina/metabolismo
18.
Biomaterials ; 98: 184-91, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27203745

RESUMEN

The mechanical properties of the microenvironment and direct contact-mediated cell-cell interactions are two variables known to be important in the determination of stem cell differentiation fate, but little is known about the interplay of these cues. Here, we use a micropatterning approach on polyacrylamide gels of tunable stiffnesses to study how homotypic cell-cell contacts and mechanical stiffness affect different stages of osteogenesis of mesenchymal stem cells (MSCs). Nuclear localization of transcription factors associated with osteogenesis depended on substrate stiffness and was independent of the degree of cell-cell contact. However, expression of alkaline phosphatase, an early protein marker for osteogenesis, increased only in cells with both direct contact with neighboring cells and adhesion to stiffer substrates. Finally, mature osteogenesis, as assessed by calcium deposition, was low in micropatterned cells, even on stiff substrates and in multicellular clusters. These results indicate that substrate stiffness and the presence of neighboring cells regulate osteogenesis in MSCs.


Asunto(s)
Resinas Acrílicas/farmacología , Comunicación Celular , Diferenciación Celular , Células Madre Mesenquimatosas/citología , Fosfatasa Alcalina/metabolismo , Animales , Adhesión Celular/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Módulo de Elasticidad , Fibronectinas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Osteogénesis/efectos de los fármacos , Factores de Transcripción/metabolismo
20.
Adv Healthc Mater ; 4(11): 1628-33, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26039892

RESUMEN

Monodisperse alginate microgels (10-50 µm) are created via droplet-based microfluidics by a novel crosslinking procedure. Ionic crosslinking of alginate is induced by release of chelated calcium ions. The process separates droplet formation and gelation reaction enabling excellent control over size and homogeneity under mild reaction conditions. Living mesenchymal stem cells are encapsulated and cultured in the generated 3D microenvironments.


Asunto(s)
Alginatos/química , Geles/química , Técnicas Analíticas Microfluídicas/métodos , Carbonato de Calcio/química , Técnicas de Cultivo de Célula , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Técnicas Analíticas Microfluídicas/instrumentación , Microesferas , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA