Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Chem Biol ; 20(5): 615-623, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38167916

RESUMEN

Cellular context is crucial for understanding the complex and dynamic kinase functions in health and disease. Systematic dissection of kinase-mediated cellular processes requires rapid and precise stimulation ('pulse') of a kinase of interest, as well as global and in-depth characterization ('chase') of the perturbed proteome under living conditions. Here we developed an optogenetic 'pulse-chase' strategy, termed decaging kinase coupled proteomics (DeKinomics), for proteome-wide profiling of kinase-driven phosphorylation at second-timescale in living cells. We took advantage of the 'gain-of-function' feature of DeKinomics to identify direct kinase substrates and further portrayed the global phosphorylation of understudied receptor tyrosine kinases under native cellular settings. DeKinomics offered a general activation-based strategy to study kinase functions with high specificity and temporal resolution under living conditions.


Asunto(s)
Proteómica , Humanos , Fosforilación , Proteómica/métodos , Proteoma/metabolismo , Optogenética/métodos , Células HEK293
2.
Anal Chem ; 95(37): 13844-13854, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37656141

RESUMEN

Thermal proteome profiling (TPP), an experimental technique combining the cellular thermal shift assay (CETSA) with quantitative protein mass spectrometry (MS), identifies interactions of drugs and chemicals with endogenous proteins. Thermal proximity coaggregation (TPCA) profiling extended TPP to study the intracellular dynamics of protein complexes. In TPP and TPCA, samples are subjected to multiple denaturing temperatures, each requiring over 100 µg of proteins, which restricts their applications for rare cells and precious clinical samples. We developed a workflow termed STASIS (scaled-down thermal profiling and coaggregation analysis with SISPROT) that scales down the required protein to as low as 1 µg per temperature. This is achieved by heating and centrifugation using the same PCR tube, processing samples with the SISPROT technology (simple and integrated spintip-based proteomics technology), and tip-based manual fractionation of TMT-labeled peptides. We evaluate the STASIS workflow with starting protein quantities of 10, 5, and 1 µg per temperature prior to heating, identifying between 4000 and 5000 proteins with 6 h of acquisition time. Importantly, we observed a high correlation in the Tm of proteins with minimal difference in TPCA performance for predicting protein complexes. Moreover, STASIS could identify the targets of methotrexate and panobinostat with high precision with 1 µg of proteins per temperature. In conclusion, STASIS is a robust cost-effective technique for target deconvolution and extended TPCA to rare primary cells and precious clinical samples for the analysis of protein complexes.


Asunto(s)
Sistemas de Liberación de Medicamentos , Proteoma , Centrifugación , Fraccionamiento Químico , Interpretación Estadística de Datos
3.
Anal Chem ; 93(5): 3026-3034, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33522225

RESUMEN

Affinity purification coupled to mass spectrometry (AP-MS) is a popular approach for deciphering the architecture of protein interaction networks. Protein lysates (100 µg) are typically required for multistep sample processing in large volumes, which often causes sample loss and reduces the MS analysis sensitivity. Herein, we reported a fully integrated spintip-based AP-MS technology, termed FISAP, for multiplexed and sensitive interactome profiling. The FISAP device can be easily employed for routine use by introducing AP beads into a C18 StageTip. Taking advantage of the switchable functionalization of the C18 matrix by sodium dodecyl sulfate, all the sample preparation steps encompassing peptide or antibody-based AP, reduction, alkylation, tryptic digestion, tandem mass tag (TMT) labeling, and desalting can be performed in a single tip with a benchtop centrifuge in 4 h. Using a biotinylated tyrosine phosphorylated (pTyr) peptide as an affinity ligand, we mapped the pTyr-dependent interactome of the pY191 motif on the immune receptor CD28 cytoplasmic domain. When processing 50 µg of protein lysates, FISAP showed a comparable interactome identification performance but better quantification performance and lower background interference compared to the traditional tube-based method. Furthermore, a cost-effective on-column TMT labeling protocol was established and integrated into the FISAP pipeline with increased sensitivity. Compared to the tube-based method, the usage of a synthetic peptide probe and a TMT reagent was both reduced by 20 times. As low as 1 µg of protein lysates could be applied for interactome profiling. Finally, we expanded the applicability of the FISAP technology to epitope tag-based AP-MS for profiling the ILK/PINCH/Parvin complex using 100 times less protein lysate than a previous report. Collectively, FISAP is an easy-to-use and sensitive technology for quantitatively profiling protein complexes when the starting material and affinity reagent are the limitation, especially for applications in biomedical research and chemical biology.


Asunto(s)
Proteínas , Proteómica , Espectrometría de Masas , Manejo de Especímenes , Tecnología
4.
Analyst ; 146(12): 3777-3798, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34042124

RESUMEN

The human body comprises rich populations of cells, which are arranged into tissues and organs with diverse functionalities. These cells exhibit a broad spectrum of phenotypes and are often organized as a heterogeneous but sophisticatedly regulated ecosystem - tissue microenvironment, inside which every cell interacts with and is reciprocally influenced by its surroundings through its life span. Therefore, it is critical to comprehensively explore the cellular machinery and biological processes in the tissue microenvironment, which is best exemplified by the tumor microenvironment (TME). The past decade has seen increasing advances in the field of spatial proteomics, the main purpose of which is to characterize the abundance and spatial distribution of proteins and their post-translational modifications in the microenvironment of diseased tissues. Herein, we outline the achievements and remaining challenges of mass spectrometry-based tissue spatial proteomics. Exciting technology developments along with important biomedical applications of spatial proteomics are highlighted. In detail, we focus on high-quality resources built by scalpel macrodissection-based region-resolved proteomics, method development of sensitive sample preparation for laser microdissection-based spatial proteomics, and antibody recognition-based multiplexed tissue imaging. In the end, critical issues and potential future directions for spatial proteomics are also discussed.


Asunto(s)
Ecosistema , Proteómica , Humanos , Captura por Microdisección con Láser , Espectrometría de Masas , Proteínas
5.
Transl Oncol ; 39: 101828, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000147

RESUMEN

BACKGROUND: The aim of this study was to investigate the potential role of lipid metabolism-associated genes (LMAGs) in neoadjuvant chemoradiotherapy (nCRT) and immunotherapy for rectal cancer. METHODS: Differential LMAGs were characterized and functional enrichment analysis was performed. Multiple machine learning algorithms were combined to explore candidate LMAGs. ROC analysis was performed to evaluate the predicting accuracy of candidate LMAGs. The expression patterns, prognostic value, genetic alterations, and immune cell infiltration of the top-ranked LMAGs were investigated. RESULTS: We identified 45 LMAGs that were differentially expressed in tumor samples of nCRT responders and non-responders. These LMAGs were closely associated with lipid metabolism-related biological processes and pathways. ROC analysis revealed that the SREBF2 gene, an important transcription factor in regulating lipid metabolism, was the highest predictor of nCRT in rectal cancer. SREBF2 was highly expressed in rectal cancer tissues and high expression of SREBF2 was associated with favorable prognosis. Multivariate analysis showed that SREBF2 was an independent prognostic factor, and we integrated it with other clinical factors to establish an effective prognostic nomogram. SREBF2 also played a synergistic role with its co-expressed genes in the prognostic process of rectal cancer. Furthermore, SREBF2 was demonstrated to be closely associated with multiple immune infiltrating cells, and immunotherapy-related genes and may be used to predict the response to immunotherapy. CONCLUSION: Our study suggests that LMAGs may serve as promising biomarkers in nCRT combined with immunotherapy for rectal cancer. However, large-scale clinical trials and biological experiments are necessary to demonstrate the efficacy and underlying mechanisms.

6.
Cell Rep ; 43(2): 113689, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38241149

RESUMEN

As a primary target of severe acute respiratory syndrome coronavirus 2, lung exhibits heterogeneous histopathological changes following infection. However, comprehensive insight into their protein basis with spatial resolution remains deficient, which hinders further understanding of coronavirus disease 2019 (COVID-19)-related pulmonary injury. Here, we generate a region-resolved proteomic atlas of hallmark pathological pulmonary structures by integrating histological examination, laser microdissection, and ultrasensitive proteomics. Over 10,000 proteins are quantified across 71 post-mortem specimens. We identify a spectrum of pathway dysregulations in alveolar epithelium, bronchial epithelium, and blood vessels compared with non-COVID-19 controls, providing evidence for transitional-state pneumocyte hyperplasia. Additionally, our data reveal the region-specific enrichment of functional markers in bronchiole mucus plugs, pulmonary fibrosis, airspace inflammation, and alveolar type 2 cells, uncovering their distinctive features. Furthermore, we detect increased protein expression associated with viral entry and inflammatory response across multiple regions, suggesting potential therapeutic targets. Collectively, this study provides a distinct perspective for deciphering COVID-19-caused pulmonary dysfunction by spatial proteomics.


Asunto(s)
COVID-19 , Lesión Pulmonar , Humanos , Proteómica , SARS-CoV-2 , Células Epiteliales Alveolares
7.
NPJ Genom Med ; 6(1): 48, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34127680

RESUMEN

Lung adenocarcinoma is heterogeneous and hierarchically organized, with a subpopulation of stem-like cells (CSCs) that reside at the apex of the hierarchy, in which exosomes act as important mediators by transporting specific molecules among different cell populations. Although there have been numerous studies on tumor exosomes, the constituents and functional properties of CSC-derived exosomes are still poorly characterized. Here we present a detail transcriptome and proteome atlas of the exosomes released by human lung adenocarcinoma stem-like cells (LSLCs). The transcriptome analysis indicates the specific patterns of exosomal constituents, including the fragmentation of transcripts and the low-level presence of circular RNAs, and identifies multiple exosomal-enriched mRNAs and lncRNAs. Integrative analysis of transcriptome and proteome data reveals the diverse functions of exosomal-enriched RNAs and proteins, many of which are associated with tumorigenesis. Importantly, several LSLC markers we identified are highly expressed in LSLC-derived exosomes and associate with poor survival, which may serve as promising liquid biopsy biomarkers for lung adenocarcinoma diagnosis. Our study provides a resource for the future elucidation of the functions of tumor-derived exosomes and their regulatory mechanisms in mediating lung cancer development.

8.
Anal Chim Acta ; 1127: 140-148, 2020 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-32800117

RESUMEN

Understanding the tumor heterogeneity through spatially resolved proteome profiling is important for biomedical research and clinical application. Laser capture microdissection (LCM) is a powerful technology for exploring local cell populations without losing spatial information. Conventionally, tissue sections are stained with hematoxylin and eosin (H&E) for cell-type identification before LCM. However, it generally requires experienced pathologists to distinguish different cell types, which limits the application of LCM to broad cancer research field. Here, we designed an immunohistochemistry (IHC)-based workflow for cell type-resolved proteome analysis of tissue samples. Firstly, targeted cell type was marked by IHC using antibody targeting cell-type specific marker to improve accuracy and efficiency of LCM. Secondly, to increase protein recovery from chemically crosslinked IHC tissues, we optimized a decrosslinking procedure to seamlessly combine with the integrated spintip-based sample preparation technology SISPROT. This newly developed approach, termed IHC-SISPROT, has comparable performance as H&E staining-based proteomic analysis. High sensitivity and reproducibility of IHC-SISPROT were achieved by combining with data independent acquisition proteomics. More than 3500 proteins were identified from only 0.2 mm2 and 12 µm thickness of hepatocellular carcinoma (HCC) tissue section. Furthermore, using 5 mm2 and 12 µm thickness of HCC tissue section, 6660 and 6052 protein groups were quantified from cancer cells and cancer-associated fibroblasts (CAFs) by the IHC-SISPROT workflow. Bioinformatic analysis revealed the enrichment of cell type-specific ligands and receptors and potentially new communications between cancer cells and CAFs by these signaling proteins. Therefore, IHC-SISPROT is a sensitive and accurate proteomic approach for spatial profiling of cell type-specific proteome from tissues.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Inmunohistoquímica , Captura por Microdisección con Láser , Proteoma , Proteómica , Reproducibilidad de los Resultados
9.
J Mater Chem B ; 7(16): 2696-2702, 2019 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32255002

RESUMEN

Protein sulfhydryl groups play a vital role in maintaining cellular redox homeostasis and protein functions and have attracted increasing interests for the selective detection of protein thiols over low-molecular-weight thiols (LMWTs). Herein, we reported a red-emitting and environment-sensitive probe (FM-red) for detecting and labeling protein thiols. The probe contains a maleimide unit as a thiol receptor and an environment-sensitive fluorophore as a sensor. The emission signal of the probe was exclusively switched on by binding to protein sulfhydryl groups through the twisted intramolecular charge transfer mechanism, while negligible fluorescence was observed when FM-red reacted with LMWTs. Various experiments verified that FM-red possessed fast responsivity (∼10 min) and high selectivity to sense protein thiols over LMWTs with a red emission (∼655 nm). These favorable properties enable the probe to image protein sulfhydryl groups in live cells and in vivo. In addition, as FM-red has a relatively high molecular weight (MW 688), it is able to separate the labeled proteins from the unlabeled ones after FM-red derivatization via routine protein electrophoresis, which may be applied to determine the redox states of thioredoxin, a small redox protein ubiquitous in all cells. With the aid of the probe, we demonstrated a significant decrease in the protein thiols and the accumulation of oxidized thioredoxin in a cellular model of Parkinson's disease.


Asunto(s)
Colorantes Fluorescentes/farmacología , Trastornos Parkinsonianos/metabolismo , Albúmina Sérica Bovina/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Tiorredoxinas/metabolismo , Animales , Células HeLa , Humanos , Microscopía Fluorescente , Oxidación-Reducción , Células PC12 , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA