Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 11(2)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562669

RESUMEN

Magnesium oxide nanoparticles (MgO NPs) were obtained by the calcination of precursor microparticles (PM) synthesized by a novel triethylamine-based precipitation method. Scanning electron microscopy (SEM) revealed a mean size of 120 nm for the MgO NPs. The results of the characterizations for MgO NPs support the suggestion that our material has the capacity to attack, and have an antibacterial effect against, Gram-negative and Gram-positive bacteria strains. The ability of the MgO NPs to produce reactive oxygen species (ROS), such as superoxide anion radicals (O2•-) or hydrogen peroxide (H2O2), was demonstrated by the corresponding quantitative assays. The MgO antibacterial activity was evaluated against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria, with minimum inhibitory concentrations (MICs) of 250 and 500 ppm on the microdilution assays, respectively. Structural changes in the bacteria, such as membrane collapse; surface changes, such as vesicular formation; and changes in the longitudinal and horizontal sizes, as well as the circumference, were observed using atomic force microscopy (AFM). The lipidic peroxidation of the bacterial membranes was quantified, and finally, a bactericidal mechanism for the MgO NPs was also proposed.

2.
Materials (Basel) ; 12(2)2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30669694

RESUMEN

The use of electronic devices to measure Relative Humidity (RH) is widespread. However, under certain circumstances, for example when explosive gases are present, a spark-free method should be used. Here we suggest the use of stimuli-responsive materials, like gelatin and interpenetrated polymers, to detect RH with an optical method. These materials are hydrophilic. When water vapor is absorbed by the films the molecules attach to the films molecular network. The result is that the film thickness increases and their refractive index changes. To detect the change of these two parameters an optical method based on diffraction gratings is employed. Surface diffraction gratings are recorded on the films. Then gratings are placed in an optical configuration that is immersed in a climatic chamber. A light beam is sent to the grating where it is diffracted. Several light orders appear. Due to the absorption of water molecules the films swell and grating surface modulation changes. This implies that the diffracted orders intensity changes. A calibrating plot relating intensity as a function of RH is obtained.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA