Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
EMBO Rep ; 19(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30126924

RESUMEN

Autophagy maintains cellular homeostasis by targeting damaged organelles, pathogens, or misfolded protein aggregates for lysosomal degradation. The autophagic process is initiated by the formation of autophagosomes, which can selectively enclose cargo via autophagy cargo receptors. A machinery of well-characterized autophagy-related proteins orchestrates the biogenesis of autophagosomes; however, the origin of the required membranes is incompletely understood. Here, we have applied sensitized pooled CRISPR screens and identify the uncharacterized transmembrane protein TMEM41B as a novel regulator of autophagy. In the absence of TMEM41B, autophagosome biogenesis is stalled, LC3 accumulates at WIPI2- and DFCP1-positive isolation membranes, and lysosomal flux of autophagy cargo receptors and intracellular bacteria is impaired. In addition to defective autophagy, TMEM41B knockout cells display significantly enlarged lipid droplets and reduced mobilization and ß-oxidation of fatty acids. Immunostaining and interaction proteomics data suggest that TMEM41B localizes to the endoplasmic reticulum (ER). Taken together, we propose that TMEM41B is a novel ER-localized regulator of autophagosome biogenesis and lipid mobilization.


Asunto(s)
Autofagia/fisiología , Movilización Lipídica/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Autofagosomas/metabolismo , Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/fisiología , Retículo Endoplásmico/metabolismo , Ácidos Grasos/metabolismo , Técnicas de Inactivación de Genes , Células HeLa , Homeostasis , Humanos , Lentivirus , Gotas Lipídicas/metabolismo , Movilización Lipídica/genética , Lisosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo
2.
J Biol Chem ; 287(40): 33691-705, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22843695

RESUMEN

Familial Parkinson disease (PD) can result from α-synuclein gene multiplication, implicating the reduction of neuronal α-synuclein as a therapeutic target. Moreover, α-synuclein content in human cerebrospinal fluid (CSF) represents a PD biomarker candidate. However, capture-based assays for α-synuclein quantification in CSF (such as by ELISA) have shown discrepancies and have limited suitability for high-throughput screening. Here, we describe two sensitive, in-solution, time-resolved Förster's resonance energy transfer (TR-FRET)-based immunoassays for total and oligomeric α-synuclein quantification. CSF analysis showed strong concordance for total α-synuclein content between two TR-FRET assays and, in agreement with a previously characterized 36 h protocol-based ELISA, demonstrated lower α-synuclein levels in PD donors. Critically, the assay suitability for high-throughput screening of siRNA constructs and small molecules aimed at reducing endogenous α-synuclein levels was established and validated. In a small-scale proof of concept compound screen using 384 well plates, signals ranged from <30 to >120% of the mean of vehicle-treated cells for molecules known to lower and increase cellular α-synuclein, respectively. Furthermore, a reverse genetic screen of a kinase-directed siRNA library identified seven genes that modulated α-synuclein protein levels (five whose knockdown increased and two that decreased cellular α-synuclein protein). This provides critical new biological insight into cellular pathways regulating α-synuclein steady-state expression that may help guide further drug discovery efforts. Moreover, we describe an inherent limitation in current α-synuclein oligomer detection methodology, a finding that will direct improvement of future assay design. Our one-step TR-FRET-based platform for α-synuclein quantification provides a novel platform with superior performance parameters for the rapid screening of large biomarker cohorts and of compound and genetic libraries, both of which are essential to the development of PD therapies.


Asunto(s)
Biomarcadores/metabolismo , Enfermedad de Parkinson/diagnóstico , alfa-Sinucleína/química , Animales , Anticuerpos/metabolismo , Bioquímica/métodos , Estudios de Cohortes , Diseño de Fármacos , Femenino , Transferencia Resonante de Energía de Fluorescencia/métodos , Regulación de la Expresión Génica , Biblioteca de Genes , Humanos , Inmunoensayo/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , ARN Interferente Pequeño/metabolismo , alfa-Sinucleína/líquido cefalorraquídeo
3.
J Neurochem ; 119(2): 398-407, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21854390

RESUMEN

Huntington's disease is a progressive neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin gene. This expansion produces a mutant form of the huntingtin protein, which contains an elongated polyglutamine stretch at its amino-terminus. Mutant huntingtin may adopt an aberrant, aggregation-prone conformation predicted to start the pathogenic process leading to neuronal dysfunction and cell death. Thus, strategies reducing mutant huntingtin may lead to disease-modifying therapies. We investigated the mechanisms and molecular targets regulating huntingtin degradation in a neuronal cell model. We first found that mutant and wild-type huntingtin displayed strikingly diverse turn-over kinetics and sensitivity to proteasome inhibition. Then, we show that autophagy induction led to accelerate degradation of mutant huntingtin aggregates. In our neuronal cell model, allosteric inhibition of mTORC1 by everolimus, a rapamycin analogue, did not induce autophagy or affect aggregate degradation. In contrast, this occurred in the presence of catalytic inhibitors of both mTOR complexes mTORC1 and mTORC2. Our data demonstrate the existence of an mTOR-dependent but everolimus-independent mechanism regulating autophagy and huntingtin-aggregate degradation in cells of neuronal origin.


Asunto(s)
Autofagia/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Western Blotting , Células Cultivadas , Everolimus , Exones/genética , Humanos , Proteína Huntingtina , Inmunoensayo , Inmunosupresores/farmacología , Cinética , Diana Mecanicista del Complejo 1 de la Rapamicina , Modelos Neurológicos , Complejos Multiproteicos , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Proteínas/antagonistas & inhibidores , ARN Mensajero/análisis , ARN Mensajero/biosíntesis , Sirolimus/análogos & derivados , Sirolimus/farmacología
4.
Sci Rep ; 8(1): 1799, 2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29379065

RESUMEN

We generated induced pluripotent stem cells (iPSCs) from patient fibroblasts to yield cell lines containing varying degrees of heteroplasmy for a m.13514 A > G mtDNA point mutation (2 lines) and for a ~6 kb single, large scale mtDNA deletion (3 lines). Long term culture of the iPSCs containing a single, large-scale mtDNA deletion showed consistent increase in mtDNA deletion levels with time. Higher levels of mtDNA heteroplasmy correlated with increased respiratory deficiency. To determine what changes occurred in deletion level during differentiation, teratomas comprising all three embryonic germ layers were generated from low (20%) and intermediate heteroplasmy (55%) mtDNA deletion clones. Regardless of whether iPSCs harbouring low or intermediate mtDNA heteroplasmy were used, the final levels of heteroplasmy in all teratoma germ layers increased to a similar high level (>60%). Thus, during human stem cell division, cells not only tolerate high mtDNA deletion loads but seem to preferentially replicate deleted mtDNA genomes. This has implications for the involvement of mtDNA deletions in both disease and ageing.


Asunto(s)
ADN Mitocondrial/genética , Eliminación de Secuencia/genética , Diferenciación Celular/genética , Línea Celular , Células Clonales/metabolismo , Fibroblastos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mitocondrias/genética , Mutación Puntual/genética
5.
PLoS One ; 8(11): e81277, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24303040

RESUMEN

Depletion of calstabin1 (FKBP12) from the RyR1 channel and consequential calcium leakage from the sarcoplasmic reticulum (SR) is found in certain disease conditions such as dystrophy, aging or muscle overuse. Here, we first assessed the effect of calstabin1 depletion on resting Ca(2+) levels and transients. We found that depletion of calstabin1 with the calstabin1-dissociation compound FK506 increased the release of calcium from the SR by 14 % during tetanic stimulation (50 Hz, 300 ms) and delayed cytosolic calcium removal. However, we did not find a significant increase in resting cytosolic Ca(2+) levels. Therefore, we tested if increased SERCA activity could counterbalance calcium leakage. By measuring the energy utilization of muscle fibers with and without FK506 treatment, we observed that FK506-treatment increased oxygen consumption by 125% compared to baseline levels. Finally, we found that pretreatment of muscle fibers with the RyR1 stabilizer JTV-519 led to an almost complete normalization of calcium flux dynamics and energy utilization. We conclude that cytosolic calcium levels are mostly preserved in conditions with leaky RyR1 channels due to increased SERCA activity. Therefore, we suggest that RyR1 leakiness might lead to chronic metabolic stress, followed by cellular damage, and RyR1 stabilizers could potentially protect diseased muscle tissue.


Asunto(s)
Calcio/metabolismo , Metabolismo Energético , Músculo Esquelético/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Proteína 1A de Unión a Tacrolimus/metabolismo , Animales , Señalización del Calcio/efectos de los fármacos , Citoplasma/metabolismo , Masculino , Ratones , Músculo Esquelético/efectos de los fármacos , Tacrolimus/farmacología , Tiazepinas/farmacología
6.
Mol Cell Biol ; 32(14): 2685-97, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22586271

RESUMEN

Acyl coenzyme A (acyl-CoA) thioesterases hydrolyze thioester bonds in acyl-CoA metabolites. The majority of mammalian thioesterases are α/ß-hydrolases and have been studied extensively. A second class of Hotdog-fold enzymes has been less well described. Here, we present a structural and functional analysis of a new mammalian mitochondrial thioesterase, Them5. Them5 and its paralog, Them4, adopt the classical Hotdog-fold structure and form homodimers in crystals. In vitro, Them5 shows strong thioesterase activity with long-chain acyl-CoAs. Loss of Them5 specifically alters the remodeling process of the mitochondrial phospholipid cardiolipin. Them5(-/-) mice show deregulation of lipid metabolism and the development of fatty liver, exacerbated by a high-fat diet. Consequently, mitochondrial morphology is affected, and functions such as respiration and ß-oxidation are impaired. The novel mitochondrial acyl-CoA thioesterase Them5 has a critical and specific role in the cardiolipin remodeling process, connecting it to the development of fatty liver and related conditions.


Asunto(s)
Cardiolipinas/metabolismo , Hígado Graso/etiología , Hígado Graso/metabolismo , Palmitoil-CoA Hidrolasa/metabolismo , Tioléster Hidrolasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Dimerización , Hígado Graso/enzimología , Células HEK293 , Humanos , Técnicas In Vitro , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Mitocondrias Hepáticas/metabolismo , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Palmitoil-CoA Hidrolasa/química , Palmitoil-CoA Hidrolasa/genética , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tioléster Hidrolasas/química , Tioléster Hidrolasas/deficiencia , Tioléster Hidrolasas/genética
7.
Chem Biol ; 19(2): 264-75, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22365609

RESUMEN

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by the amplification of a polyglutamine stretch at the N terminus of the huntingtin protein. N-terminal fragments of the mutant huntingtin (mHtt) aggregate and form intracellular inclusions in brain and peripheral tissues. Aggregates are an important hallmark of the disease, translating into a high need to quantify them in vitro and in vivo. We developed a one-step TR-FRET-based immunoassay to quantify soluble and aggregated mHtt in cell and tissue homogenates. Strikingly, quantification revealed a decrease of soluble mHtt correlating with an increase of aggregated protein in primary neuronal cell cultures, transgenic R6/2, and HdhQ150 knock-in HD mice. These results emphasize the assay's efficiency for highly sensitive and quantitative detection of soluble and aggregated mHtt and its application in high-throughput screening and characterization of HD models.


Asunto(s)
Enfermedad de Huntington/metabolismo , Inmunoensayo , Proteínas del Tejido Nervioso/análisis , Proteínas Nucleares/análisis , Animales , Células Cultivadas , Transferencia Resonante de Energía de Fluorescencia , Técnicas de Sustitución del Gen , Proteína Huntingtina , Enfermedad de Huntington/patología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
8.
Mol Cell Biol ; 32(14): 2871-9, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22586266

RESUMEN

Brown adipose tissue (BAT) is a key tissue for energy expenditure via fat and glucose oxidation for thermogenesis. In this study, we demonstrate that the myostatin/activin receptor IIB (ActRIIB) pathway, which serves as an important negative regulator of muscle growth, is also a negative regulator of brown adipocyte differentiation. In parallel to the anticipated hypertrophy of skeletal muscle, the pharmacological inhibition of ActRIIB in mice, using a neutralizing antibody, increases the amount of BAT without directly affecting white adipose tissue. Mechanistically, inhibition of ActRIIB inhibits Smad3 signaling and activates the expression of myoglobin and PGC-1 coregulators in brown adipocytes. Consequently, ActRIIB blockade in brown adipose tissue enhances mitochondrial function and uncoupled respiration, translating into beneficial functional consequences, including enhanced cold tolerance and increased energy expenditure. Importantly, ActRIIB inhibition enhanced energy expenditure only at ambient temperature or in the cold and not at thermoneutrality, where nonshivering thermogenesis is minimal, strongly suggesting that brown fat activation plays a prominent role in the metabolic actions of ActRIIB inhibition.


Asunto(s)
Receptores de Activinas Tipo II/antagonistas & inhibidores , Adipogénesis/fisiología , Tejido Adiposo Pardo/metabolismo , Termogénesis/fisiología , Receptores de Activinas Tipo II/inmunología , Receptores de Activinas Tipo II/metabolismo , Adipocitos Marrones/citología , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/ultraestructura , Animales , Anticuerpos Neutralizantes , Diferenciación Celular , Metabolismo Energético , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Miostatina/metabolismo , Transducción de Señal , Proteína smad3/metabolismo , Factores de Transcripción/metabolismo
9.
PLoS One ; 7(9): e44457, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22984513

RESUMEN

Cleavage of the full-length mutant huntingtin (mhtt) protein into smaller, soluble aggregation-prone mhtt fragments appears to be a key process in the neuropathophysiology of Huntington's Disease (HD). Recent quantification studies using TR-FRET-based immunoassays showed decreasing levels of soluble mhtt correlating with an increased load of aggregated mhtt in the aging HdhQ150 mouse brain. To better characterize the nature of these changes at the level of native mhtt species, we developed a detection method that combines size exclusion chromatography (SEC) and time-resolved fluorescence resonance energy transfer (TR-FRET) that allowed us to resolve and define the formation, aggregation and temporal dynamics of native soluble mhtt species and insoluble aggregates in the brain of the HdhQ150 knock-in mouse. We found that mhtt fragments and not full-length mhtt form oligomers in the brains of one month-old mice long before disease phenotypes and mhtt aggregate histopathology occur. As the HdhQ150 mice age, brain levels of soluble full-length mhtt protein remain similar. In contrast, the soluble oligomeric pool of mhtt fragments slightly increases during the first two months before it declines between 3 and 8 months of age. This decline inversely correlates with the formation of insoluble mhtt aggregates. We also found that the pool-size of soluble mhtt oligomers is similar in age-matched heterozygous and homozygous HdhQ150 mouse brains whereas insoluble aggregate formation is greatly accelerated in the homozygous mutant brain. The capacity of the soluble mhtt oligomer pool therefore seems exhausted already in the heterozygous state and likely kept constant by changes in flux and, as a consequence, increased rate of insoluble aggregate formation. We demonstrate that our novel findings in mice translate to human HD brain but not HD patient fibroblasts.


Asunto(s)
Envejecimiento , Enfermedad de Huntington/genética , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Cromatografía/métodos , Modelos Animales de Enfermedad , Células Madre Embrionarias/citología , Fibroblastos/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Ratones , Modelos Biológicos , Unión Proteica , Proteínas de Transporte de Serotonina en la Membrana Plasmática/fisiología
10.
J Cell Sci ; 117(Pt 19): 4591-602, 2004 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-15331667

RESUMEN

The central nervous system myelin components oligodendrocyte-myelin glycoprotein, myelin-associated glycoprotein and the Nogo-66 domain of Nogo-A inhibit neurite outgrowth by binding the neuronal glycosyl-phosphatidylinositol-anchored Nogo-66 receptor (NgR) that transduces the inhibitory signal to the cell interior via a transmembrane co-receptor, p75NTR. Here, we demonstrate that human NgR expressed in human neuroblastoma cells is constitutively cleaved in a post-ER compartment to generate a lipid-raft associated C-terminal fragment that is present on the cell surface and a soluble N-terminal fragment that is released into the medium. Mass spectrometric analysis demonstrated that the N-terminal fragment terminated just after the C-terminus of the ligand-binding domain of NgR. In common with other shedding mechanisms, the release of this fragment was blocked by a hydroxamate-based inhibitor of zinc metalloproteinases, but not by inhibitors of other protease classes and up-regulated by treatment with the cellular cholesterol depleting agent methyl-beta-cyclodextrin. The N-terminal fragment bound Nogo-66 and blocked Nogo-66 binding to cell surface NgR but failed to associate with p75NTR, indicative of a role as a Nogo-66 antagonist. Furthermore, the N- and C-terminal fragments of NgR were detectable in human brain cortex and the N-terminal fragment was also present in human cerebrospinal fluid, demonstrating that NgR proteolysis occurs within the human nervous system. Our findings thus identify a potential cellular mechanism for the regulation of NgR function at the level of the receptor.


Asunto(s)
Retículo Endoplásmico/metabolismo , Microdominios de Membrana/metabolismo , Metaloendopeptidasas/metabolismo , Proteínas de la Mielina/metabolismo , Receptores de Superficie Celular/metabolismo , Zinc/metabolismo , Animales , Células CHO , Corteza Cerebral/metabolismo , Colesterol/metabolismo , Cricetinae , Cricetulus , Proteínas Ligadas a GPI , Humanos , Espectrometría de Masas , Metaloendopeptidasas/antagonistas & inhibidores , Glicoproteína Asociada a Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito , Neuroblastoma/metabolismo , Receptor Nogo 1 , Inhibidores de Proteasas/farmacología , Estructura Terciaria de Proteína/fisiología , Receptor de Factor de Crecimiento Nervioso , Receptores de Factor de Crecimiento Nervioso/metabolismo , Células Tumorales Cultivadas , beta-Ciclodextrinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA