Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(19): 3712-3728.e10, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36150385

RESUMEN

Recognition of pathogen-derived foreign nucleic acids is central to innate immune defense. This requires discrimination between structurally highly similar self and nonself nucleic acids to avoid aberrant inflammatory responses as in the autoinflammatory disorder Aicardi-Goutières syndrome (AGS). How vast amounts of self RNA are shielded from immune recognition to prevent autoinflammation is not fully understood. Here, we show that human SAM-domain- and HD-domain-containing protein 1 (SAMHD1), one of the AGS-causing genes, functions as a single-stranded RNA (ssRNA) 3'exonuclease, the lack of which causes cellular RNA accumulation. Increased ssRNA in cells leads to dissolution of RNA-protein condensates, which sequester immunogenic double-stranded RNA (dsRNA). Release of sequestered dsRNA from condensates triggers activation of antiviral type I interferon via retinoic-acid-inducible gene I-like receptors. Our results establish SAMHD1 as a key regulator of cellular RNA homeostasis and demonstrate that buffering of immunogenic self RNA by condensates regulates innate immune responses.


Asunto(s)
Interferón Tipo I , ARN Bicatenario , Antivirales , Enfermedades Autoinmunes del Sistema Nervioso , Exonucleasas/genética , Humanos , Inmunidad Innata/genética , Interferón Tipo I/genética , Malformaciones del Sistema Nervioso , ARN Bicatenario/genética , Proteína 1 que Contiene Dominios SAM y HD/genética
2.
Mol Cell ; 81(23): 4810-4825.e12, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34774131

RESUMEN

Mitochondria contain a specific translation machinery for the synthesis of mitochondria-encoded respiratory chain components. Mitochondrial tRNAs (mt-tRNAs) are also generated from the mitochondrial DNA and, similar to their cytoplasmic counterparts, are post-transcriptionally modified. Here, we find that the RNA methyltransferase METTL8 is a mitochondrial protein that facilitates 3-methyl-cytidine (m3C) methylation at position C32 of the mt-tRNASer(UCN) and mt-tRNAThr. METTL8 knockout cells show a reduction in respiratory chain activity, whereas overexpression increases activity. In pancreatic cancer, METTL8 levels are high, which correlates with lower patient survival and an enhanced respiratory chain activity. Mitochondrial ribosome profiling uncovered mitoribosome stalling on mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons. Further analysis of the respiratory chain complexes using mass spectrometry revealed reduced incorporation of the mitochondrially encoded proteins ND6 and ND1 into complex I. The well-balanced translation of mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons through METTL8-mediated m3C32 methylation might, therefore, facilitate the optimal composition and function of the mitochondrial respiratory chain.


Asunto(s)
Metiltransferasas/metabolismo , ARN Mitocondrial/química , ARN de Transferencia/química , Animales , Anticodón , Proliferación Celular , Codón , Citoplasma , ADN Mitocondrial/metabolismo , Transporte de Electrón , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Ratones , Mitocondrias/metabolismo , Membranas Mitocondriales , Proteínas Mitocondriales/química , Consumo de Oxígeno , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidad , Ribosomas/metabolismo , Regulación hacia Arriba
3.
Mol Cell ; 73(6): 1162-1173.e5, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30712990

RESUMEN

The MHC class I antigen presentation system enables T cell immunosurveillance of cancers and viruses. A substantial fraction of the immunopeptidome derives from rapidly degraded nascent polypeptides (DRiPs). By knocking down each of the 80 ribosomal proteins, we identified proteins that modulate peptide generation without altering source protein expression. We show that 60S ribosomal proteins L6 (RPL6) and RPL28, which are adjacent on the ribosome, play opposite roles in generating an influenza A virus-encoded peptide. Depleting RPL6 decreases ubiquitin-dependent peptide presentation, whereas depleting RPL28 increases ubiquitin-dependent and -independent peptide presentation. 40S ribosomal protein S28 (RPS28) knockdown increases total peptide supply in uninfected cells by increasing DRiP synthesis from non-canonical translation of "untranslated" regions and non-AUG start codons and sensitizes tumor cells for T cell targeting. Our findings raise the possibility of modulating immunosurveillance by pharmaceutical targeting ribosomes.


Asunto(s)
Presentación de Antígeno , Antígenos de Histocompatibilidad Clase I/biosíntesis , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Linfocitos T/metabolismo , Animales , Línea Celular Tumoral , Técnicas de Cocultivo , Células HEK293 , Antígenos de Histocompatibilidad Clase I/inmunología , Interacciones Huésped-Patógeno , Humanos , Vigilancia Inmunológica , Virus de la Influenza A/inmunología , Virus de la Influenza A/patogenicidad , Melanoma/inmunología , Melanoma/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Grandes de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/metabolismo , Linfocitos T/inmunología , Linfocitos T/virología
4.
Nucleic Acids Res ; 52(10): 5880-5894, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38682613

RESUMEN

Dihydrouridine (D) is a common modified base found predominantly in transfer RNA (tRNA). Despite its prevalence, the mechanisms underlying dihydrouridine biosynthesis, particularly in prokaryotes, have remained elusive. Here, we conducted a comprehensive investigation into D biosynthesis in Bacillus subtilis through a combination of genetic, biochemical, and epitranscriptomic approaches. Our findings reveal that B. subtilis relies on two FMN-dependent Dus-like flavoprotein homologs, namely DusB1 and DusB2, to introduce all D residues into its tRNAs. Notably, DusB1 exhibits multisite enzyme activity, enabling D formation at positions 17, 20, 20a and 47, while DusB2 specifically catalyzes D biosynthesis at positions 20 and 20a, showcasing a functional redundancy among modification enzymes. Extensive tRNA-wide D-mapping demonstrates that this functional redundancy impacts the majority of tRNAs, with DusB2 displaying a higher dihydrouridylation efficiency compared to DusB1. Interestingly, we found that BsDusB2 can function like a BsDusB1 when overexpressed in vivo and under increasing enzyme concentration in vitro. Furthermore, we establish the importance of the D modification for B. subtilis growth at suboptimal temperatures. Our study expands the understanding of D modifications in prokaryotes, highlighting the significance of functional redundancy in this process and its impact on bacterial growth and adaptation.


Asunto(s)
Bacillus subtilis , ARN de Transferencia , Uridina , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , ARN Bacteriano/metabolismo , ARN Bacteriano/genética , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Uridina/metabolismo , Uridina/análogos & derivados , Expresión Génica
5.
Nucleic Acids Res ; 52(6): 2848-2864, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38416577

RESUMEN

During their maturation, ribosomal RNAs (rRNAs) are decorated by hundreds of chemical modifications that participate in proper folding of rRNA secondary structures and therefore in ribosomal function. Along with pseudouridine, methylation of the 2'-hydroxyl ribose moiety (Nm) is the most abundant modification of rRNAs. The majority of Nm modifications in eukaryotes are placed by Fibrillarin, a conserved methyltransferase belonging to a ribonucleoprotein complex guided by C/D box small nucleolar RNAs (C/D box snoRNAs). These modifications impact interactions between rRNAs, tRNAs and mRNAs, and some are known to fine tune translation rates and efficiency. In this study, we built the first comprehensive map of Nm sites in Drosophila melanogaster rRNAs using two complementary approaches (RiboMethSeq and Nanopore direct RNA sequencing) and identified their corresponding C/D box snoRNAs by whole-transcriptome sequencing. We de novo identified 61 Nm sites, from which 55 are supported by both sequencing methods, we validated the expression of 106 C/D box snoRNAs and we predicted new or alternative rRNA Nm targets for 31 of them. Comparison of methylation level upon different stresses show only slight but specific variations, indicating that this modification is relatively stable in D. melanogaster. This study paves the way to investigate the impact of snoRNA-mediated 2'-O-methylation on translation and proteostasis in a whole organism.


Asunto(s)
Drosophila melanogaster , ARN Nucleolar Pequeño , Animales , ARN Nucleolar Pequeño/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Secuencia de Bases , ARN Ribosómico/metabolismo , Metilación
6.
Nature ; 565(7740): 500-504, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30626973

RESUMEN

In mammals, 2'-O-methylation of RNA is a molecular signature by which the cellular innate immune system distinguishes endogenous from exogenous messenger RNA1-3. However, the molecular functions of RNA 2'-O-methylation are not well understood. Here we have purified TAR RNA-binding protein (TRBP) and its interacting partners and identified a DICER-independent TRBP complex containing FTSJ3, a putative 2'-O-methyltransferase (2'O-MTase). In vitro and ex vivo experiments show that FTSJ3 is a 2'O-MTase that is recruited to HIV RNA through TRBP. Using RiboMethSeq analysis4, we identified predominantly FTSJ3-dependent 2'-O-methylations at specific residues on the viral genome. HIV-1 viruses produced in FTSJ3 knockdown cells show reduced 2'-O-methylation and trigger expression of type 1 interferons (IFNs) in human dendritic cells through the RNA sensor MDA5. This induction of IFN-α and IFN-ß leads to a reduction in HIV expression. We have identified an unexpected mechanism used by HIV-1 to evade innate immune recognition: the recruitment of the TRBP-FTSJ3 complex to viral RNA and its 2'-O-methylation.


Asunto(s)
VIH-1/inmunología , VIH-1/patogenicidad , Inmunidad Innata , Metiltransferasas/metabolismo , ARN Helicasas DEAD-box/metabolismo , Células Dendríticas/inmunología , VIH-1/genética , Células HeLa , Humanos , Interferón Tipo I/biosíntesis , Interferón Tipo I/inmunología , Helicasa Inducida por Interferón IFIH1/metabolismo , Metilación , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/deficiencia , Unión Proteica , ARN Viral/química , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/metabolismo
7.
Nucleic Acids Res ; 51(8): 3971-3987, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36971106

RESUMEN

More than 170 posttranscriptional RNA modifications are so far known on both coding and noncoding RNA species. Within this group, pseudouridine (Ψ) and queuosine (Q) represent conserved RNA modifications with fundamental functional roles in regulating translation. Current detection methods of these modifications, which both are reverse transcription (RT)-silent, are mostly based on the chemical treatment of RNA prior to analysis. To overcome the drawbacks associated with indirect detection strategies, we have engineered an RT-active DNA polymerase variant called RT-KTq I614Y that produces error RT signatures specific for Ψ or Q without prior chemical treatment of the RNA samples. Combining this polymerase with next-generation sequencing techniques allows the direct identification of Ψ and Q sites of untreated RNA samples using a single enzymatic tool.


Asunto(s)
Nucleósido Q , Seudouridina , ARN Mensajero/metabolismo , Seudouridina/metabolismo , ARN , ARN no Traducido , Procesamiento Postranscripcional del ARN
8.
Proc Natl Acad Sci U S A ; 119(12): e2117334119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35294285

RESUMEN

SignificanceThe presence of RNA chemical modifications has long been known, but their precise molecular consequences remain unknown. 2'-O-methylation is an abundant modification that exists in RNA in all domains of life. Ribosomal RNA (rRNA) represents a functionally important RNA that is heavily modified by 2'-O-methylations. Although abundant at functionally important regions of the rRNA, the contribution of 2'-O-methylations to ribosome activities is unknown. By establishing a method to disturb rRNA 2'-O-methylation patterns, we show that rRNA 2'-O-methylations affect the function and fidelity of the ribosome and change the balance between different ribosome conformational states. Our work links 2'-O-methylation to ribosome dynamics and defines a set of critical rRNA 2'-O-methylations required for ribosome biogenesis and others that are dispensable.


Asunto(s)
ARN Ribosómico , Ribosomas , Metilación , ARN/metabolismo , ARN Ribosómico/metabolismo , Ribosomas/metabolismo
9.
PLoS Genet ; 18(1): e1010012, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041640

RESUMEN

Ribosomes are essential nanomachines responsible for protein production. Although ribosomes are present in every living cell, ribosome biogenesis dysfunction diseases, called ribosomopathies, impact particular tissues specifically. Here, we evaluate the importance of the box C/D snoRNA-associated ribosomal RNA methyltransferase fibrillarin (Fbl) in the early embryonic development of Xenopus laevis. We report that in developing embryos, the neural plate, neural crest cells (NCCs), and NCC derivatives are rich in fbl transcripts. Fbl knockdown leads to striking morphological defects affecting the eyes and craniofacial skeleton, due to lack of NCC survival caused by massive p53-dependent apoptosis. Fbl is required for efficient pre-rRNA processing and 18S rRNA production, which explains the early developmental defects. Using RiboMethSeq, we systematically reinvestigated ribosomal RNA 2'-O methylation in X. laevis, confirming all 89 previously mapped sites and identifying 15 novel putative positions in 18S and 28S rRNA. Twenty-three positions, including 10 of the new ones, were validated orthogonally by low dNTP primer extension. Bioinformatic screening of the X. laevis transcriptome revealed candidate box C/D snoRNAs for all methylated positions. Mapping of 2'-O methylation at six developmental stages in individual embryos indicated a trend towards reduced methylation at specific positions during development. We conclude that fibrillarin knockdown in early Xenopus embryos causes reduced production of functional ribosomal subunits, thus impairing NCC formation and migration.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Precursores del ARN/metabolismo , ARN Ribosómico 18S/metabolismo , ARN Ribosómico 28S/metabolismo , Xenopus laevis/crecimiento & desarrollo , Animales , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Técnicas de Silenciamiento del Gen , Metilación , Cresta Neural/crecimiento & desarrollo , Cresta Neural/metabolismo , Placa Neural/crecimiento & desarrollo , Placa Neural/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética
10.
RNA ; 28(11): 1542-1552, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36100352

RESUMEN

Epstein-Barr virus (EBV) expresses two highly abundant noncoding RNAs called EBV-encoded RNA 1 (EBER1) and EBER2, which are preserved in all clinical isolates of EBV, thus underscoring their essential function in the viral life cycle. Recent epitranscriptomics studies have uncovered a vast array of distinct RNA modifications within cellular as well as viral noncoding RNAs that are instrumental in executing their function. Here we show that EBER2 is marked by pseudouridylation, and by using HydraPsiSeq the modification site was mapped to a single nucleotide within the 3' region of EBER2. The writer enzyme was identified to be the snoRNA-dependent pseudouridine synthase Dyskerin, which is the catalytic subunit of H/ACA small nucleolar ribonucleoprotein complexes, and is guided to EBER2 by SNORA22. Similar to other noncoding RNAs for which pseudouridylation has a positive effect on RNA stability, loss of EBER2 pseudouridylation results in a decrease in RNA levels. Furthermore, pseudouridylation of EBER2 is required for the prolific accumulation of progeny viral genomes, suggesting that this single modification in EBER2 is important for efficient viral lytic replication. Taken together, our findings add to the list of RNA modifications that are essential for noncoding RNAs to implement their physiological roles.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/genética , ARN Viral/genética , ARN no Traducido/genética , Estabilidad del ARN , Replicación Viral/genética
11.
AIDS Behav ; 28(6): 1898-1911, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38480648

RESUMEN

Respectful maternity care (RMC) for women living with HIV (WLHIV) improves birth outcomes and may influence women's long-term commitment to HIV care. In this study, we evaluated the MAMA training, a team-based simulation training for labor and delivery (L&D) providers to improve RMC and reduce stigma in caring for WLHIV. The study was conducted in six clinical sites in the Kilimanjaro Region of Tanzania. 60 L&D providers participated in the MAMA training, which included a two-and-a-half-day workshop followed by a half-day on-site refresher. We assessed the impact of the MAMA training using a pre-post quasi-experimental design. To assess provider impacts, participants completed assessments at baseline and post-intervention periods, measuring RMC practices, HIV stigma, and self-efficacy to provide care. To evaluate patient impacts, we enrolled birthing women at the study facilities in the pre- (n = 229) and post- (n = 214) intervention periods and assessed self-reported RMC and perceptions of provider HIV stigma. We also collected facility-level data on the proportion of patients who gave birth by cesarean section, disaggregated by HIV status. The intervention had a positive impact on all provider outcomes; providers reported using more RMC practices, lower levels of HIV stigma, and greater self-efficacy to provide care for WLHIV. We did not observe differences in self-reported patient outcomes. In facility-level data, we observed a trend in reduction in cesarean section rates for WLHIV (33.0% vs. 24.1%, p = 0.14). The findings suggest that the MAMA training may improve providers' attitudes and practices in caring for WLHIV giving birth and should be considered for scale-up.


Asunto(s)
Infecciones por VIH , Servicios de Salud Materna , Estigma Social , Humanos , Femenino , Tanzanía/epidemiología , Infecciones por VIH/psicología , Infecciones por VIH/terapia , Embarazo , Adulto , Aprendizaje Basado en Problemas , Personal de Salud/educación , Personal de Salud/psicología , Entrenamiento Simulado , Respeto , Actitud del Personal de Salud , Parto Obstétrico , Complicaciones Infecciosas del Embarazo/prevención & control , Trabajo de Parto/psicología
12.
Nucleic Acids Res ; 50(20): e115, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36062567

RESUMEN

Synthetic mRNA has recently moved into the focus of therapeutic and vaccination efforts. Incorporation of modified nucleotides during in vitro transcription can improve translation and attenuate immunogenicity, but is limited to triphosphate nucleotides which are accepted by RNA polymerases, and their incorporation is either random or complete. In contrast, site-specific modification, herein termed 'point modification' in analogy to point mutations, holds significant technical challenge. We developed fundamental techniques for isolation of long, translatable and internally point-modified mRNAs. Enabling concepts include three-way-one-pot splint ligations, and isolation of mRNA by real-time elution from agarose gels. The use of blue light permitted visualization of mRNA in pre-stained gels without the photochemical damage associated with the use of hard UV-radiation. This allowed visualization of the mRNA through its migration in the agarose gel, which in turn, was a prerequisite for its recovery by electroelution into precast troughs. Co-eluting agarose particles were quantified and found to not be detrimental to mRNA translation in vitro. Translation of EGFP-coding mRNA into functional protein was quantified by incorporation of 35S-labelled methionine and by in-gel EGFP fluorescence. This enabled the functional analysis of point modifications, specifically of ribose methylations in the middle of a 1371 nt long mRNA.


Asunto(s)
Ingeniería Genética , Nucleótidos , Metilación , Nucleótidos/metabolismo , ARN Mensajero/síntesis química , ARN Mensajero/genética , Sefarosa , Ingeniería Genética/métodos
13.
Int J Mol Sci ; 25(9)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38732249

RESUMEN

Alterations in cell fate are often attributed to (epigenetic) regulation of gene expression. An emerging paradigm focuses on specialized ribosomes within a cell. However, little evidence exists for the dynamic regulation of ribosome composition and function. Here, we stimulated a chondrocytic cell line with transforming growth factor beta (TGF-ß2) and mapped changes in ribosome function, composition and ribosomal RNA (rRNA) epitranscriptomics. 35S Met/Cys incorporation was used to evaluate ribosome activity. Dual luciferase reporter assays were used to assess ribosomal modus. Ribosomal RNA expression and processing were determined by RT-qPCR, while RiboMethSeq and HydraPsiSeq were used to determine rRNA modification profiles. Label-free protein quantification of total cell lysates, isolated ribosomes and secreted proteins was done by LC-MS/MS. A three-day TGF-ß2 stimulation induced total protein synthesis in SW1353 chondrocytic cells and human articular chondrocytes. Specifically, TGF-ß2 induced cap-mediated protein synthesis, while IRES-mediated translation was not (P53 IRES) or little affected (CrPv IGR and HCV IRES). Three rRNA post-transcriptional modifications (PTMs) were affected by TGF-ß2 stimulation (18S-Gm1447 downregulated, 18S-ψ1177 and 28S-ψ4598 upregulated). Proteomic analysis of isolated ribosomes revealed increased interaction with eIF2 and tRNA ligases and decreased association of eIF4A3 and heterogeneous nuclear ribonucleoprotein (HNRNP)s. In addition, thirteen core ribosomal proteins were more present in ribosomes from TGF-ß2 stimulated cells, albeit with a modest fold change. A prolonged stimulation of chondrocytic cells with TGF-ß2 induced ribosome activity and changed the mode of translation. These functional changes could be coupled to alterations in accessory proteins in the ribosomal proteome.


Asunto(s)
Condrocitos , Biosíntesis de Proteínas , ARN Ribosómico , Ribosomas , Factor de Crecimiento Transformador beta2 , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Ribosomas/metabolismo , Humanos , ARN Ribosómico/metabolismo , ARN Ribosómico/genética , Factor de Crecimiento Transformador beta2/metabolismo , Factor de Crecimiento Transformador beta2/farmacología , Sitios Internos de Entrada al Ribosoma , Línea Celular
14.
Crit Rev Biochem Mol Biol ; 56(2): 178-204, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33618598

RESUMEN

Organisms from all domains of life invest a substantial amount of energy for the introduction of RNA modifications into nearly all transcripts studied to date. Instrumental analysis of RNA can focus on the modified residues and reveal the function of these epitranscriptomic marks. Here, we will review recent advances and breakthroughs achieved by NMR spectroscopy, sequencing, and mass spectrometry of the epitranscriptome.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN/genética , Animales , Epigénesis Genética , Humanos , Espectrometría de Masas/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , ARN/química , Análisis de Secuencia de ARN/métodos , Transcriptoma
15.
J Biol Chem ; 298(9): 102261, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35843310

RESUMEN

Regulation of protein synthesis is critical for control of gene expression in all cells. Ribosomes are ribonucleoprotein machines responsible for translating cellular proteins. Defects in ribosome production, function, or regulation are detrimental to the cell and cause human diseases, such as progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO) syndrome. PEHO syndrome is a devastating neurodevelopmental disorder caused by mutations in the ZNHIT3 gene, which encodes an evolutionarily conserved nuclear protein. The precise mechanisms by which ZNHIT3 mutations lead to PEHO syndrome are currently unclear. Studies of the human zinc finger HIT-type containing protein 3 homolog in budding yeast (Hit1) revealed that this protein is critical for formation of small nucleolar ribonucleoprotein complexes that are required for rRNA processing and 2'-O-methylation. Here, we use budding yeast as a model system to reveal the basis for the molecular pathogenesis of PEHO syndrome. We show that missense mutations modeling those found in PEHO syndrome patients cause a decrease in steady-state Hit1 protein levels, a significant reduction of box C/D snoRNA levels, and subsequent defects in rRNA processing and altered cellular translation. Using RiboMethSeq analysis of rRNAs isolated from actively translating ribosomes, we reveal site-specific changes in the rRNA modification pattern of PEHO syndrome mutant yeast cells. Our data suggest that PEHO syndrome is a ribosomopathy and reveal potential new aspects of the molecular basis of this disease in translation dysregulation.


Asunto(s)
Edema Encefálico , Enfermedades Neurodegenerativas , Proteínas Nucleares , Atrofia Óptica , Ribonucleoproteínas Nucleolares Pequeñas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Espasmos Infantiles , Factores de Transcripción , Edema Encefálico/genética , Humanos , Recién Nacido , Mutación , Enfermedades Neurodegenerativas/genética , Proteínas Nucleares/genética , Atrofia Óptica/genética , ARN Nucleolar Pequeño/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Espasmos Infantiles/genética , Factores de Transcripción/genética
16.
Mol Cancer ; 22(1): 119, 2023 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-37516825

RESUMEN

Newly growing evidence highlights the essential role that epitranscriptomic marks play in the development of many cancers; however, little is known about the role and implications of altered epitranscriptome deposition in prostate cancer. Here, we show that the transfer RNA N7-methylguanosine (m7G) transferase METTL1 is highly expressed in primary and advanced prostate tumours. Mechanistically, we find that METTL1 depletion causes the loss of m7G tRNA methylation and promotes the biogenesis of a novel class of small non-coding RNAs derived from 5'tRNA fragments. 5'tRNA-derived small RNAs steer translation control to favour the synthesis of key regulators of tumour growth suppression, interferon pathway, and immune effectors. Knockdown of Mettl1 in prostate cancer preclinical models increases intratumoural infiltration of pro-inflammatory immune cells and enhances responses to immunotherapy. Collectively, our findings reveal a therapeutically actionable role of METTL1-directed m7G tRNA methylation in cancer cell translation control and tumour biology.


Asunto(s)
Carcinogénesis , Neoplasias de la Próstata , Masculino , Humanos , Carcinogénesis/genética , Transformación Celular Neoplásica , Neoplasias de la Próstata/genética , Transcripción Genética , Procesamiento Postranscripcional del ARN , Metiltransferasas/genética
17.
J Exp Bot ; 74(15): 4384-4400, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37179467

RESUMEN

In plant cells, a large pool of iron (Fe) is contained in the nucleolus, as well as in chloroplasts and mitochondria. A central determinant for intracellular distribution of Fe is nicotianamine (NA) generated by NICOTIANAMINE SYNTHASE (NAS). Here, we used Arabidopsis thaliana plants with disrupted NAS genes to study the accumulation of nucleolar iron and understand its role in nucleolar functions and more specifically in rRNA gene expression. We found that nas124 triple mutant plants, which contained lower quantities of the iron ligand NA, also contained less iron in the nucleolus. This was concurrent with the expression of normally silenced rRNA genes from nucleolar organizer regions 2 (NOR2). Notably, in nas234 triple mutant plants, which also contained lower quantities of NA, nucleolar iron and rDNA expression were not affected. In contrast, in both nas124 and nas234, specific RNA modifications were differentially regulated in a genotype dependent manner. Taken together, our results highlight the impact of specific NAS activities in RNA gene expression. We discuss the interplay between NA and nucleolar iron with rDNA functional organization and RNA methylation.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , ADN Ribosómico/metabolismo , Metilación , Hierro/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo
18.
Methods ; 203: 311-321, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35314341

RESUMEN

Analysis of epitranscriptomic RNA modifications by deep sequencing-based approaches brings an essential contribution to the general knowledge on their precise locations and relative stoichiometry in cellular RNAs. To reveal RNA modifications, several analytical approaches have been proposed, including antibody-driven enrichment, analysis of RT-signatures and specific chemical treatments. However, analysis and interpretation of these massive datasets, especially for low abundant cellular RNAs (e.g. mRNA and lncRNA) is not easy nor straightforward, since the insufficient specificity and selectivity are leading to massive false-positive and false-negative identifications. The main issue in the application of these methods relies on a subjective classification of potentially modified positions, mostly based on arbitrarily defined threshold values for different scores. Such approach using pre-defined scores' values was revealed to be appropriate for limited complexity datasets (for tRNA and/or rRNA analysis), but application to longer reference sequences requires much better classification algorithms. In this work we applied a machine learning algorithm (Random Forest, RF) to create a predictive model for analysis of 2'-O-methylated sites in RNA using RiboMethSeq datasets. Model's training was performed on a large collection of human rRNA datasets with well-known modification profiles and the performance of the prediction was assessed using experimentally defined profiles for other eukaryotic rRNAs (S.cerevisiae and A.thaliana). Application of this Random Forest prediction model for detection of other RNA modifications and to more complex datasets is discussed.


Asunto(s)
Algoritmos , Aprendizaje Automático , Humanos , Metilación , ARN , ARN de Transferencia/genética , Saccharomyces cerevisiae/genética
19.
Methods ; 203: 383-391, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34481083

RESUMEN

Detection of RNA modified nucleotides using deep sequencing can be performed by several approaches, including antibody-driven enrichment and natural or chemically induced RT signatures. However, only very few RNA modified nucleotides generate natural RT signatures and antibody-driven enrichment heavily depends on the quality of antibodies used and may be highly biased. Thus, the use of chemically-induced RT signatures is now considered as the most trusted experimental approach. In addition, the use of chemical reagents allows inclusion of simple "mock-treated" controls, to exclude spontaneous RT arrests, SNPs and other misincorporation-prone sites. Hydrazine is a well-known RNA-specific reagent, already extensively used in the past for RNA sequencing and structural probing. Hydrazine is highly reactive to U and shows low reaction rates with ψ residues, allowing their distinction by deep sequencing-based protocols. However, other modified RNA residues also show particular behavior upon hydrazine treatment. Here we present methodological developments allowing to use HydraPsiSeq for precise quantification of RNA pseudouridylation and also detection and quantification of some other RNA modifications, in addition to ψ residues.


Asunto(s)
Seudouridina , Procesamiento Postranscripcional del ARN , Hidrazinas , Nucleótidos , Seudouridina/genética , ARN/química , Análisis de Secuencia de ARN/métodos
20.
BMC Pregnancy Childbirth ; 23(1): 181, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927460

RESUMEN

BACKGROUND: The experience of HIV stigma during intrapartum care can impact women's trust in the health care system and undermine their long-term commitment to HIV care engagement. Delivery of respectful maternity care (RMC) to women living with HIV (WLHIV) can improve quality of life and clinical outcomes. The goal of this study is to conduct an evaluation of MAMA (Mradi wa Afya ya Mama Mzazi, Project to Support the Health of Women Giving Birth), a simulation team-training curriculum for labor and delivery providers that addresses providers' instrumental and attitudinal stigma toward WLHIV and promotes the delivery of evidence-based RMC for WLHIV. METHODS: The MAMA intervention will be evaluated among healthcare providers across six clinics in the Kilimanjaro Region of Tanzania. To evaluate the impact of MAMA, we will enroll WLHIV who give birth in the facilities before (n = 103 WLHIV) and after (n = 103 WLHIV) the intervention. We will examine differences in the primary outcome (perceptions of RMC) and secondary outcomes (postpartum HIV care engagement; perceptions of HIV stigma in the facility; internal HIV stigma; clinical outcomes and evidence-based practices) between women enrolled in the two time periods. Will also assess participating providers (n = 60) at baseline, immediate post, 1-month post training, and 2-month post training. We will examine longitudinal changes in the primary outcome (practices of RMC) and secondary outcomes (stigma toward WLHIV; self-efficacy in delivery intrapartum care). Quality assurance data will be collected to assess intervention feasibility and acceptability. DISCUSSION: The implementation findings will be used to finalize the intervention for a train-the-trainer model that is scalable, and the outcomes data will be used to power a multi-site study to detect significant differences in HIV care engagement. TRIAL REGISTRATION: The trial is registered at clinicaltrials.gov, NCT05271903.


Asunto(s)
Infecciones por VIH , Servicios de Salud Materna , Femenino , Humanos , Embarazo , Parto , Aprendizaje Basado en Problemas , Calidad de Vida , Tanzanía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA