Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur J Neurosci ; 60(1): 3772-3794, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38726801

RESUMEN

Beside the well-documented involvement of secondary somatosensory area, the cortical network underlying late somatosensory evoked potentials (P60/N60 and P100/N100) is still unknown. Electroencephalogram and magnetoencephalogram source imaging were performed to further investigate the origin of the brain cortical areas involved in late somatosensory evoked potentials, using sensory inputs of different strengths and by testing the correlation between cortical sources. Simultaneous high-density electroencephalograms and magnetoencephalograms were performed in 19 participants, and electrical stimulation was applied to the median nerve (wrist level) at intensity between 1.5 and 9 times the perceptual threshold. Source imaging was undertaken to map the stimulus-induced brain cortical activity according to each individual brain magnetic resonance imaging, during three windows of analysis covering early and late somatosensory evoked potentials. Results for P60/N60 and P100/N100 were compared with those for P20/N20 (early response). According to literature, maximal activity during P20/N20 was found in central sulcus contralateral to stimulation site. During P60/N60 and P100/N100, activity was observed in contralateral primary sensorimotor area, secondary somatosensory area (on both hemispheres) and premotor and multisensory associative cortices. Late responses exhibited similar characteristics but different from P20/N20, and no significant correlation was found between early and late generated activities. Specific clusters of cortical activities were activated with specific input/output relationships underlying early and late somatosensory evoked potentials. Cortical networks, partly common to and distinct from early somatosensory responses, contribute to late responses, all participating in the complex somatosensory brain processing.


Asunto(s)
Electroencefalografía , Potenciales Evocados Somatosensoriales , Magnetoencefalografía , Corteza Somatosensorial , Humanos , Potenciales Evocados Somatosensoriales/fisiología , Magnetoencefalografía/métodos , Masculino , Femenino , Adulto , Electroencefalografía/métodos , Corteza Somatosensorial/fisiología , Corteza Somatosensorial/diagnóstico por imagen , Nervio Mediano/fisiología , Adulto Joven , Estimulación Eléctrica/métodos , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos
2.
PLoS Biol ; 18(7): e3000789, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32614823

RESUMEN

In the absence of any task, both the brain and spinal cord exhibit spontaneous intrinsic activity organised in a set of functionally relevant neural networks. However, whether such resting-state networks (RSNs) are interconnected across the brain and spinal cord is unclear. Here, we used a unique scanning protocol to acquire functional images of both brain and cervical spinal cord (CSC) simultaneously and examined their spatiotemporal correspondence in humans. We show that the brain and spinal cord activities are strongly correlated during rest periods, and specific spinal cord regions are functionally linked to consistently reported brain sensorimotor RSNs. The functional organisation of these networks follows well-established anatomical principles, including the contralateral correspondence between the spinal hemicords and brain hemispheres as well as sensory versus motor segregation of neural pathways along the brain-spinal cord axis. Thus, our findings reveal a unified functional organisation of sensorimotor networks in the entire central nervous system (CNS) at rest.


Asunto(s)
Encéfalo/fisiología , Descanso/fisiología , Médula Espinal/fisiología , Adulto , Mapeo Encefálico , Corteza Cerebral/fisiología , Femenino , Humanos , Masculino , Red Nerviosa/fisiología
3.
J Neuroeng Rehabil ; 20(1): 136, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798637

RESUMEN

BACKGROUND: Movement sonification, the use of real-time auditory feedback linked to movement parameters, have been proposed to support rehabilitation. Nevertheless, if promising results have been reported, the effect of the type of sound used has not been studied systematically. The aim of this study was to investigate in a single session the effect of different types of sonification both quantitatively and qualitatively on patients with acquired brain lesions and healthy participants. METHODS: An experimental setup enabling arm sonification was developed using three different categories of sonification (direct sound modulation, musical interaction, and soundscape). Simple moving forward movements performed while sliding on a table with both arms were investigated with all participants. Quantitative analysis on the movement timing were performed considering various parameters (sound condition, affected arm and dominance, sonification categories). Qualitative analysis of semi-structured interviews were also conducted, as well as neuropsychological evaluation of music perception. RESULTS: For both the patient and healthy groups (15 participants each), average duration for performing the arm movement is significantly longer with sonification compared to the no-sound condition (p < 0.001). Qualitative analysis of semi-structured interviews revealed different aspects of motivational and affective aspects of sonification. Most participants of both groups preferred to complete the task with sound (29 of 30 participants), and described the experience as playful (22 of 30 participants). More precisely, the soundscape (nature sounds) was the most constantly preferred (selected first by 14 of 30 participants). CONCLUSION: Overall, our results confirm that the sonification has an effect on the temporal execution of the movement during a single-session. Globally, sonification is welcomed by the participants, and we found convergent and differentiated appreciations of the different sonification types.


Asunto(s)
Movimiento , Música , Humanos , Voluntarios Sanos , Brazo
4.
Neuroimage ; 253: 119111, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35331873

RESUMEN

The spinal cord is important for sensory guidance and execution of skilled movements. Yet its role in human motor learning is not well understood. Despite evidence revealing an active involvement of spinal circuits in the early phase of motor learning, whether long-term learning engages similar changes in spinal cord activation and functional connectivity remains unknown. Here, we investigated spinal-cerebral functional plasticity associated with learning of a specific sequence of visually-guided joystick movements (sequence task) over six days of training. On the first and last training days, we acquired high-resolution functional images of the brain and cervical cord simultaneously, while participants practiced the sequence or a random task while electromyography was recorded from wrist muscles. After six days of training, the subjects' motor performance improved in the sequence compared to the control condition. These behavioral changes were associated with decreased co-contractions and increased reciprocal activations between antagonist wrist muscles. Importantly, early learning was characterized by activation in the C8 level, whereas a more rostral activation in the C6-C7 was found during the later learning phase. Motor sequence learning was also supported by increased spinal cord functional connectivity with distinct brain networks, including the motor cortex, superior parietal lobule, and the cerebellum at the early stage, and the angular gyrus and cerebellum at a later stage of learning. Our results suggest that the early vs. late shift in spinal activation from caudal to rostral cervical segments synchronized with distinct brain networks, including parietal and cerebellar regions, is related to progressive changes reflecting the increasing fine control of wrist muscles during motor sequence learning.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Encéfalo/fisiología , Humanos , Aprendizaje/fisiología , Médula Espinal
5.
Neuroimage ; 245: 118684, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34732324

RESUMEN

Most of our knowledge about the human spinal ascending (sensory) and descending (motor) pathways comes from non-invasive electrophysiological investigations. However, recent methodological advances in acquisition and analyses of functional magnetic resonance imaging (fMRI) data from the spinal cord, either alone or in combination with the brain, have allowed us to gain further insights into the organization of this structure. In the current review, we conducted a systematic search to produced somatotopic maps of the spinal fMRI activity observed through different somatosensory, motor and resting-state paradigms. By cross-referencing these human neuroimaging findings with knowledge acquired through neurophysiological recordings, our review demonstrates that spinal fMRI is a powerful tool for exploring, in vivo, the human spinal cord pathways. We report strong cross-validation between task-related and resting-state fMRI in accordance with well-known hemicord, postero-anterior and rostro-caudal organization of these pathways. We also highlight the specific advantages of using spinal fMRI in clinical settings to characterize better spinal-related impairments, predict disease progression, and guide the implementation of therapeutic interventions.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Médula Espinal/diagnóstico por imagen , Médula Espinal/fisiología , Humanos , Médula Espinal/anatomía & histología
6.
Ann Neurol ; 86(2): 158-167, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31177556

RESUMEN

OBJECTIVE: C9orf72 hexanucleotide repeats expansions account for almost half of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) cases. Recent imaging studies in asymptomatic C9orf72 carriers have demonstrated cerebral white (WM) and gray matter (GM) degeneration before the age of 40 years. The objective of this study was to characterize cervical spinal cord (SC) changes in asymptomatic C9orf72 hexanucleotide carriers. METHODS: Seventy-two asymptomatic individuals were enrolled in a prospective study of first-degree relatives of ALS and FTD patients carrying the c9orf72 hexanucleotide expansion. Forty of them carried the pathogenic mutation (C9+ ). Each subject underwent quantitative cervical cord imaging. Structural GM and WM metrics and diffusivity parameters were evaluated at baseline and 18 months later. Data were analyzed in C9+ and C9- subgroups, and C9+ subjects were further stratified by age. RESULTS: At baseline, significant WM atrophy was detected at each cervical vertebral level in C9+ subjects older than 40 years without associated changes in GM and diffusion tensor imaging parameters. At 18-month follow-up, WM atrophy was accompanied by significant corticospinal tract (CST) fractional anisotropy (FA) reductions. Intriguingly, asymptomatic C9+ subjects older than 40 years with family history of ALS (as opposed to FTD) also exhibited significant CST FA reduction at baseline. INTERPRETATION: Cervical SC imaging detects WM atrophy exclusively in C9+ subjects older than 40 years, and progressive CST FA reductions can be identified on 18-month follow-up. Cervical SC magnetic resonance imaging readily captures presymptomatic pathological changes and disease propagation in c9orf72-associated conditions. ANN NEUROL 2019;86:158-167.


Asunto(s)
Enfermedades Asintomáticas , Proteína C9orf72/genética , Heterocigoto , Mutación/genética , Neuroimagen/tendencias , Médula Espinal/diagnóstico por imagen , Adulto , Anciano , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/genética , Estudios de Seguimiento , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Humanos , Estudios Longitudinales , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
7.
J Physiol ; 597(22): 5445-5467, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31523813

RESUMEN

KEY POINTS: •Amyotrophic lateral sclerosis (ALS) motoneurons become hypoexcitable with disease progression in experimental models, raising questions about the neural hyperexcitability supported by clinical observations. •A variant of the ∆F method, based on motor unit discharge frequency modulations during recruitment and derecruitment, has been developed to investigate the motoneuron capacity to self-sustained discharge in patients. •The modulation of motor unit firing rate during ramp contraction and vibration-induced recruitment are modified in ALS, suggesting lower motoneuron capacity to self-sustained discharge, which is a sign of hypoexcitability. •∆F-D decreases with functional impairment and its reduction is more pronounced in fast progressors. •In patients with ALS, motoneurons exhibit hypoexcitability, which increases with disease progression. ABSTRACT: Experimental models have primarily revealed spinal motoneuron hypoexcitability in amyotrophic lateral sclerosis (ALS), which is contentious considering the role of glutamate-induced excitotoxicity in neurodegeneration and clinical features rather supporting hyperexcitability. This phenomenon was evaluated in human patients by investigating changes in motor unit firing during contraction and relaxation. Twenty-two ALS patients with subtle motor deficits and 28 controls performed tonic contractions of extensor carpi radialis, triceps brachialis, tibialis anterior and quadriceps, aiming to isolate a low-threshold unit (U1) on the electromyogram (EMG). Subsequently, they performed a stronger contraction or tendon vibration was delivered, to recruit higher threshold unit (U2) for 10 s before they relaxed progressively. EMG and motor unit potential analyses suggest altered neuromuscular function in all muscles, including those with normal strength (Medical Research Council score at 5). During the preconditioning tonic phase, U1 discharge frequency did not differ significantly between groups. During recruitment, the increase in U1 frequency (∆F-R) was comparable between groups both during contraction and tendon vibration. During derecruitment, the decrease in U1 frequency (∆F-D) was reduced in ALS regardless of the recruitment mode, particularly for ∆F-R <8 Hz in the upper limbs, consistent with the muscle weakness profile of the group. ∆F-D was associated with functional disability and its reduction was more pronounced in patients with more rapid disease progression rate. This in vivo study has demonstrated reduced motoneuron capacity for self-sustained discharge, and further supports that motoneurons are normo- to hypoexcitable in ALS patients, similar to observations in experimental models.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Neuronas Motoras/fisiología , Columna Vertebral/fisiopatología , Adulto , Anciano , Estudios de Casos y Controles , Electromiografía/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Contracción Muscular/fisiología , Músculo Esquelético/fisiopatología , Tendones/fisiopatología
8.
PLoS Biol ; 13(6): e1002186, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26125597

RESUMEN

The spinal cord participates in the execution of skilled movements by translating high-level cerebral motor representations into musculotopic commands. Yet, the extent to which motor skill acquisition relies on intrinsic spinal cord processes remains unknown. To date, attempts to address this question were limited by difficulties in separating spinal local effects from supraspinal influences through traditional electrophysiological and neuroimaging methods. Here, for the first time, we provide evidence for local learning-induced plasticity in intact human spinal cord through simultaneous functional magnetic resonance imaging of the brain and spinal cord during motor sequence learning. Specifically, we show learning-related modulation of activity in the C6-C8 spinal region, which is independent from that of related supraspinal sensorimotor structures. Moreover, a brain-spinal cord functional connectivity analysis demonstrates that the initial linear relationship between the spinal cord and sensorimotor cortex gradually fades away over the course of motor sequence learning, while the connectivity between spinal activity and cerebellum gains strength. These data suggest that the spinal cord not only constitutes an active functional component of the human motor learning network but also contributes distinctively from the brain to the learning process. The present findings open new avenues for rehabilitation of patients with spinal cord injuries, as they demonstrate that this part of the central nervous system is much more plastic than assumed before. Yet, the neurophysiological mechanisms underlying this intrinsic functional plasticity in the spinal cord warrant further investigations.


Asunto(s)
Encéfalo/fisiología , Aprendizaje/fisiología , Destreza Motora/fisiología , Médula Espinal/fisiología , Femenino , Voluntarios Sanos , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
9.
J Neurophysiol ; 111(9): 1865-76, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24501265

RESUMEN

Crossed reflex action mediated by muscle spindle afferent inputs has recently been revealed in humans. This raised the question of whether a complex spinal network involving commissural interneurons receiving inputs from proprioceptors and suprasegmental structures, as described in cats, persists in humans and contributes to the interlimb coordination during movement. First, we investigated the neurophysiological mechanisms underlying crossed reflex action between ankle plantar flexors and its corticospinal control from primary motor cortex. Second, we studied its modulation during motor tasks. We observed crossed inhibition in contralateral soleus motoneurons occurring with about 3 ms central latency, which is consistent with spinal transmission through oligosynaptic pathway. The early phase of inhibition was evoked with lower stimulus intensity than the late phase, suggesting mediation by group I and group II afferents, respectively. The postsynaptic origin of crossed inhibition is confirmed by the finding that both H-reflex and motor-evoked potential were reduced upon conditioning stimulation. Transcranial magnetic stimulation over ipsilateral and contralateral primary motor cortex reduced crossed inhibition, especially its late group II part. Last, late group II crossed inhibition was particularly depressed during motor tasks, especially when soleus was activated during the walking stance phase. Our results suggest that both group I and group II commissural interneurons participate in crossed reflex actions between ankle plantar flexors. Neural transmission at this level is depressed by descending inputs activated by transcranial magnetic stimulation over the primary motor cortex or during movement. The specific modulation of group II crossed inhibition suggests control from monoaminergic midbrain structures and its role for interlimb coordination during locomotion.


Asunto(s)
Reflejo H , Extremidad Inferior/inervación , Inhibición Neural , Tractos Piramidales/fisiología , Adulto , Femenino , Humanos , Interneuronas/fisiología , Extremidad Inferior/fisiología , Masculino , Corteza Motora/citología , Corteza Motora/fisiología , Neuronas Motoras/fisiología , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Tractos Piramidales/citología , Caminata/fisiología
10.
Sci Transl Med ; 16(738): eadg3665, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478631

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, characterized by the death of upper (UMN) and lower motor neurons (LMN) in the motor cortex, brainstem, and spinal cord. Despite decades of research, ALS remains incurable, challenging to diagnose, and of extremely rapid progression. A unifying feature of sporadic and familial forms of ALS is cortical hyperexcitability, which precedes symptom onset, negatively correlates with survival, and is sufficient to trigger neurodegeneration in rodents. Using electrocorticography in the Sod1G86R and FusΔNLS/+ ALS mouse models and standard electroencephalography recordings in patients with sporadic ALS, we demonstrate a deficit in theta-gamma phase-amplitude coupling (PAC) in ALS. In mice, PAC deficits started before symptom onset, and in patients, PAC deficits correlated with the rate of disease progression. Using mass spectrometry analyses of CNS neuropeptides, we identified a presymptomatic reduction of noradrenaline (NA) in the motor cortex of ALS mouse models, further validated by in vivo two-photon imaging in behaving SOD1G93A and FusΔNLS/+ mice, that revealed pronounced reduction of locomotion-associated NA release. NA deficits were also detected in postmortem tissues from patients with ALS, along with transcriptomic alterations of noradrenergic signaling pathways. Pharmacological ablation of noradrenergic neurons with DSP-4 reduced theta-gamma PAC in wild-type mice and administration of a synthetic precursor of NA augmented theta-gamma PAC in ALS mice. Our findings suggest theta-gamma PAC as means to assess and monitor cortical dysfunction in ALS and warrant further investigation of the NA system as a potential therapeutic target.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades del Sistema Nervioso Autónomo , Dopamina beta-Hidroxilasa/deficiencia , Enfermedades Neurodegenerativas , Norepinefrina/deficiencia , Humanos , Ratones , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Médula Espinal/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Superóxido Dismutasa/metabolismo
11.
J Physiol ; 591(4): 1017-29, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23045348

RESUMEN

The natural target of the botulinum neurototoxin type A (BoNT-A) is the neuromuscular junction. When injected into a muscle, BoNT-A is internalized by motoneurone terminals where it functions as an endopeptidase, cleaving protein components of the synaptic machinery responsible for vesicle docking and exocytosis. As a result, BoNT-A induces a characteristic flaccid paralysis of the affected muscle. In animal models, BoNT-A applied in the periphery can also influence central activity via retrograde transport and transcytosis. An analogous direct central effect in humans is still debated. The present study was designed to address whether BoNT-A modifies the activity of the spinal recurrent inhibitory pathways, when injected at muscular level, in humans. To avoid methodological bias, the recurrent inhibition from an injected muscle (soleus) was investigated on an untreated muscle (quadriceps), and stimulation parameters (producing recurrent inhibition) were monitored on a third non-injected muscle but innervated by the same nerve as the soleus (flexor digitorum brevis). The experiments were performed on 14 post-stroke patients exhibiting spasticity in ankle plantarflexors, candidates for BoNT-A. One month after BoNT-A, the level of recurrent inhibition was depressed. It is suggested that the depression of recurrent inhibition was induced by BoNT-A, injected peripherally, through axonal transport and blockade of the cholinergic synapse between motoneurone recurrent collaterals and Renshaw cells.


Asunto(s)
Toxinas Botulínicas Tipo A/farmacología , Espasticidad Muscular/tratamiento farmacológico , Músculo Esquelético/efectos de los fármacos , Anciano , Femenino , Nervio Femoral/efectos de los fármacos , Nervio Femoral/fisiología , Reflejo H/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/fisiología , Espasticidad Muscular/fisiopatología , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/fisiopatología , Nervio Tibial/efectos de los fármacos , Nervio Tibial/fisiología
13.
J Neurophysiol ; 107(2): 532-43, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22031772

RESUMEN

In humans, propriospinal neurons located at midcervical levels receive peripheral and corticospinal inputs and probably participate in the control of grip tasks, but their role in reaching movements, as observed in cats and primates, is still an open question. The effect of ulnar nerve stimulation on flexor carpi radialis (FCR) motor evoked potential (MEP) was tested during reaching tasks and tonic wrist flexion. Significant MEP facilitation was observed at the end of reach during reach-to-grasp but not during grasp, reach-to-point, or tonic contractions. MEP facilitation occurred at a longer interstimulus interval than expected for convergence of corticospinal and afferent volleys at motoneuron level and was not paralleled by a change in the H-reflex. These findings suggest convergence of the two volleys at propriospinal level. Ulnar-induced MEP facilitation was observed when conditioning stimuli were at 0.75 motor response threshold (MT), but not 1 MT. This favors an increased excitability of propriospinal neurons rather than depression of their feedback inhibition, as has been observed during tonic power grip tasks. It is suggested that the ulnar-induced facilitation of FCR MEP during reach may be due to descending activation of propriospinal neurons, assisting the early recruitment of large motoneurons for rapid movement. Because the feedback inhibitory control is still open, this excitation can be truncated by cutaneous inputs from the palmar side of the hand during grasp, thus assisting movement termination. It is concluded that the feedforward activation of propriospinal neurons and their feedback control may be involved in the internal model, motor planning, and online adjustments for reach-to-grasp movements in humans.


Asunto(s)
Reflejo H/fisiología , Fuerza de la Mano/fisiología , Mano/inervación , Músculo Esquelético/fisiología , Desempeño Psicomotor/fisiología , Muñeca/fisiología , Adulto , Análisis de Varianza , Biofisica , Estimulación Eléctrica , Electromiografía , Potenciales Evocados Motores/fisiología , Femenino , Lateralidad Funcional , Humanos , Masculino , Movimiento/fisiología , Tiempo de Reacción , Reclutamiento Neurofisiológico/fisiología , Estimulación Magnética Transcraneal , Nervio Cubital/fisiología
14.
Eur J Neurosci ; 35(3): 457-67, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22288482

RESUMEN

The effects of transcranial magnetic stimulation (TMS) on post-discharge histograms of single motor units in the first dorsal interosseous have been tested to estimate the input-output properties of cortical network-mediating short-interval intracortical inhibition (SICI) to pyramidal cells of the human primary motor cortex. SICI was studied using the paired pulse paradigm (2-ms interval): test TMS intensity was varied to evoke peaks of different size in post-discharge histograms, reflecting the corticospinal excitatory post-synaptic potential in the relevant spinal motoneuron, and conditioning TMS intensity was constant (0.6 × the resting motor threshold). Navigated brain stimulation was used to monitor the coil position. A linear relationship was observed between test peak size and test TMS intensity, reflecting linear summation of excitatory inputs induced by TMS. SICI was estimated using the difference between conditioned (produced by the paired pulses) and test peaks (produced by the isolated test pulse). Although the conditioning intensity (activating cortical inhibitory interneurons mediating SICI) was kept constant throughout the experiments, the level of SICI changed with the test peak size, in a non-linear fashion, suggesting that low-threshold cortical neurons (excitatory interneurons/pyramidal cells) are less sensitive to SICI than those of higher threshold. These findings provide the first experimental evidence, under physiological conditions, for non-linear input/output properties of a complex cortical network. Consequently, changes in the recruitment gain of cortical inhibitory interneurons can greatly modify the excitability of pyramidal cells and their response to afferent inputs.


Asunto(s)
Corteza Cerebral/fisiología , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Estimulación Magnética Transcraneal/métodos , Adulto , Corteza Cerebral/citología , Electromiografía , Femenino , Humanos , Masculino
15.
Acta Physiol (Oxf) ; 234(4): e13758, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34981890

RESUMEN

AIM: Adaptive mechanisms in spinal circuits are likely involved in homeostatic responses to maintain motor output in amyotrophic lateral sclerosis. Given the role of Renshaw cells in regulating the motoneuron input/output gain, we investigated the modulation of heteronymous recurrent inhibition. METHODS: Electrical stimulations were used to activate recurrent collaterals resulting in the Hoffmann reflex depression. Inhibitions from soleus motor axons to quadriceps motoneurons, and vice versa, were tested in 38 patients and matched group of 42 controls. RESULTS: Compared with controls, the mean depression of quadriceps reflex was larger in patients, while that of soleus was smaller, suggesting that heteronymous recurrent inhibition was enhanced in quadriceps but reduced in soleus. The modulation of recurrent inhibition was linked to the size of maximal direct motor response and lower limb dysfunctions, suggesting a significant relationship with the integrity of the target motoneuron pool and functional abilities. No significant link was found between the integrity of motor axons activating Renshaw cells and the level of inhibition. Enhanced inhibition was particularly observed in patients within the first year after symptom onset and with slow progression of lower limb dysfunctions. Normal or reduced inhibitions were mainly observed in patients with motor weakness first in lower limbs and greater dysfunctions in lower limbs. CONCLUSION: We provide the first evidence for enhanced recurrent inhibition and speculate that Renshaw cells might have transient protective role on motoneuron by counteracting hyperexcitability at early stages. Several mechanisms likely participate including cortical influence on Renshaw cell and reinnervation by slow motoneurons.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células de Renshaw , Humanos , Neuronas Motoras/fisiología , Inhibición Neural/fisiología , Médula Espinal/fisiología
16.
J Neurol ; 268(5): 1792-1802, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33388927

RESUMEN

OBJECTIVE: The aim of this study was the comprehensive characterisation of longitudinal clinical, electrophysiological and neuroimaging measures in type III and IV adult spinal muscular atrophy (SMA) with a view to propose objective monitoring markers for future clinical trials. METHODS: Fourteen type III or IV SMA patients underwent standardised assessments including muscle strength testing, functional evaluation (SMAFRS and MFM), MUNIX (abductor pollicis brevis, APB; abductor digiti minimi, ADM; deltoid; tibialis anterior, TA; trapezius) and quantitative cervical spinal cord MRI to appraise segmental grey and white matter atrophy. Patients underwent a follow-up assessment with the same protocol 24 months later. Longitudinal comparisons were conducted using the Wilcoxon-test for matched data. Responsiveness was estimated using standardized response means (SRM) and a composite score was generated based on the three most significant variables. RESULTS: Significant functional decline was observed based on SMAFRS (p = 0.019), pinch and knee flexion strength (p = 0.030 and 0.027), MUNIX and MUSIX value in the ADM (p = 0.0006 and 0.043) and in TA muscle (p = 0.025). No significant differences were observed based on cervical MRI measures. A significant reduction was detected in the composite score (p = 0.0005, SRM = -1.52), which was the most responsive variable and required a smaller number of patients than single variables in the estimation of sample size for clinical trials. CONCLUSIONS: Quantitative strength testing, SMAFRS and MUNIX readily capture disease progression in adult SMA patients. Composite multimodal scores increase predictive value and may reduce sample size requirements in clinical trials.


Asunto(s)
Atrofias Musculares Espinales de la Infancia , Adulto , Humanos , Estudios Longitudinales , Fuerza Muscular , Músculo Esquelético/diagnóstico por imagen , Evaluación de Resultado en la Atención de Salud , Atrofias Musculares Espinales de la Infancia/diagnóstico por imagen
17.
Front Syst Neurosci ; 14: 17, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32327977

RESUMEN

Music-based therapy for rehabilitation induces neuromodulation at the brain level and improves the functional recovery. In line with this, musical rhythmicity improves post-stroke gait. Moreover, an external distractor also helps stroke patients to improve locomotion. We raised the question whether music with irregular tempo (arrhythmic music), and its possible influence on attention would induce neuromodulation and improve the post-stroke gait. We tested music-induced neuromodulation at the level of a propriospinal reflex, known to be particularly involved in the control of stabilized locomotion; after stroke, the reflex is enhanced on the hemiparetic side. The study was conducted in 12 post-stroke patients and 12 controls. Quadriceps EMG was conditioned by electrical stimulation of the common peroneal nerve, which produces a biphasic facilitation on EMG, reflecting the level of activity of the propriospinal reflex between ankle dorsiflexors and quadriceps (CPQ reflex). The CPQ reflex was tested during treadmill locomotion at the preferred speed of each individual, in 3 conditions randomly alternated: without music vs. 2 arrhythmic music tracks, including a pleasant melody and unpleasant aleatory electronic sounds (AES); biomechanical and physiological parameters were also investigated. The CPQ reflex was significantly larger in patients during walking without sound, compared to controls. During walking with music, irrespective of the theme, there was no more difference between groups. In controls, music had no influence on the size of CPQ reflex. In patients, CPQ reflex was significantly larger during walking without sound than when listening to the melody or AES. No significant differences have been revealed concerning the biomechanical and the physiological parameters in both groups. Arrhythmic music listening modulates the spinal excitability during post-stroke walking, restoring the CPQ reflex activity to normality. The plasticity was not accompanied by any clear improvement of gait parameters, but the patients reported to prefer walking with music than without. The role of music as external focus of attention is discussed. This study has shown that music can modulate propriospinal neural network particularly involved in the gait control during the first training session. It is speculated that repetition may help to consolidate plasticity and would contribute to gait recovery after stroke.

18.
Clin Neurophysiol ; 131(8): 1986-1996, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32336595

RESUMEN

OBJECTIVE: The excitability of the lower motoneurone pool is traditionally tested using the H reflex and a constant-stimulus paradigm, which measures changes in the amplitude of the reflex response. This technique has limitations because reflex responses of different size must involve the recruitment or inhibition of different motoneurones. The threshold-tracking technique ensures that the changes in excitability occur for an identical population of motoneurones. We aimed to assess this technique and then apply it in patients with motor neurone disease (MND). METHODS: The threshold-tracking approach was assessed in 17 healthy subjects and 11 patients with MND. The soleus H reflex was conditioned by deep peroneal nerve stimulation producing reciprocal Ia and so-called D1 and D2 inhibitions, which are believed to reflect presynaptic inhibition of soleus Ia afferents. RESULTS: Threshold tracking was quicker than the constant-stimulus technique and reliable, properties that may be advantageous for clinical studies. D1 inhibition was significantly reduced in patients with MND. CONCLUSIONS: Threshold tracking is useful and may be preferable under some conditions for studying the excitability of the motoneurone pool. The decreased D1 inhibition in the patients suggests that presynaptic inhibition may be reduced in MND. SIGNIFICANCE: Reduced presynaptic inhibition could be evidence of an interneuronopathy in MND. It is possible that the hyperreflexia is a spinal pre-motoneuronal disorder, and not definitive evidence of corticospinal involvement in MND.


Asunto(s)
Electromiografía/métodos , Reflejo H , Interneuronas/fisiología , Enfermedad de la Neurona Motora/fisiopatología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de la Neurona Motora/diagnóstico , Neuronas Motoras/fisiología , Músculo Esquelético/fisiopatología , Inhibición Neural , Nervio Peroneo/fisiopatología , Potenciales Sinápticos
19.
Front Neurol ; 10: 240, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30941091

RESUMEN

Objective: Limitations with manual dexterity are an important problem for patients suffering from hemiparesis post stroke. Sensorimotor deficits, compensatory strategies and the use of alternative grasping configurations may influence the efficiency of prehensile motor behavior. The aim of the present study is to examine how different grasp configurations affect patient ability to regulate both grip forces and object orientation when lifting, holding and placing an object. Methods: Twelve stroke patients with mild to moderate hemiparesis were recruited. Each was required to lift, hold and replace an instrumented object. Four different grasp configurations were tested on both the hemiparetic and less affected arms. Load cells from each of the 6 faces of the instrumented object and an integrated inertial measurement unit were used to extract data regarding the timing of unloading/loading phases, regulation of grip forces, and object orientation throughout the task. Results: Grip forces were greatest when using a palmar-digital grasp and lowest when using a top grasp. The time delay between peak acceleration and maximum grip force was also greatest for palmar-digital grasp and lowest for the top grasp. Use of the hemiparetic arm was associated with increased duration of the unloading phase and greater difficulty with maintaining the vertical orientation of the object at the transitions to object lifting and object placement. The occurrence of touch and push errors at the onset of grasp varied according to both grasp configuration and use of the hemiparetic arm. Conclusion: Stroke patients exhibit impairments in the scale and temporal precision of grip force adjustments and reduced ability to maintain object orientation with various grasp configurations using the hemiparetic arm. Nonetheless, the timing and magnitude of grip force adjustments may be facilitated using a top grasp configuration. Conversely, whole hand prehension strategies compound difficulties with grip force scaling and inhibit the synchrony of grasp onset and object release.

20.
IEEE Trans Neural Syst Rehabil Eng ; 27(2): 265-274, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30640618

RESUMEN

When a lightly touched surface is moved according to a closed-loop control law, it has been shown in young adults that the centre of pressure (CoP) can be displaced in a controllable way without the conscious cooperation of participants. In this closed-loop paradigm, the surface velocity was continuously adjusted according to the CoP position. Since the closed-loop control of the CoP does not require the participant's voluntary cooperation, it could be of interest for the development of innovative biofeedback devices in balance rehabilitation. Before anticipating the implementation of this closed-loop control paradigm with patients, it is necessary to establish its effects on people suffering from balance impairments. The aim of this paper was to assess the effects of this CoP closed-loop control in post-stroke (PS) patients and aged-matched healthy controls. Efficacy of the closed-loop control for driving the patients' CoP was assessed using the saturation time and two scores computing the error between the predefined and the current CoP trajectories. 68% and 83% of the trials were considered as successful in patients and controls, respectively. The global tracking error of the closed-loop score was similar between the two groups. However, when examining the real CoP displacement from the starting position to the desired one, PS patients responded to the closed-loop control to a lesser extent than controls. These results, obtained in the same conditions for healthy and PS individuals could be improved by tuning the closed-loop parameters according to individual characteristics. This paper paves the road towards the development of involuntary/automatic biofeedback techniques in more ecological conditions.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular/instrumentación , Accidente Cerebrovascular/complicaciones , Enfermedades Vestibulares/etiología , Enfermedades Vestibulares/rehabilitación , Anciano , Algoritmos , Biorretroalimentación Psicológica , Fenómenos Biomecánicos , Diseño de Equipo , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Postura , Accidente Cerebrovascular/fisiopatología , Enfermedades Vestibulares/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA