Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Genet Mol Biol ; 43(2): e20190098, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32353097

RESUMEN

Marine turtle hybridization is usually sporadic and involves reports of only a few individuals; however, Brazilian populations have high hybridization rates. Here we investigated the presence of hybrids in morphologically identified immature hawksbills (Eretmochelys imbricata) along the South Western Atlantic (SWA). We sequenced one mitochondrial (D-Loop) and three nuclear DNA (RAG1, RAG2, and CMOS) markers to better understand the patterns and characteristics of hybrids. We identified 22 hybrids (n = 270), 11 of them at the extreme South of the SWA. Uruguay had the highest hybrid frequency in the SWA (~37.5%) followed by southern Brazil with 30%. These are common areas for loggerheads (Caretta caretta) but uncommon for hawksbills, and these hybrids may be adopting the behavior of loggerheads. By analyzing nuclear markers, we can infer that 50% of the sampled hybrids are first generation (F1) and 36% are the result of backcrosses between hybrids and pure E. imbricata (> F1). We also report for the first time immature E. imbricata x Lepidochelys olivacea hybrids at the Brazilian coast. Considering the high frequency of hybrids in the SWA, continuous monitoring should be performed to assess the fitness, genetic integrity, and extent of changes in the gene pools of involved populations.

2.
J Hered ; 103(6): 792-805, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23045612

RESUMEN

Current understanding of spatial ecology is insufficient in many threatened marine species, failing to provide a solid basis for conservation and management. To address this issue for globally endangered green turtles, we investigated their population distribution by sequencing a mitochondrial control region segment from the Rocas Atoll courtship area (n = 30 males) and four feeding grounds (FGs) in Brazil (n = 397), and compared our findings to published data (n (nesting) = 1205; n (feeding) = 1587). At Rocas Atoll, the first Atlantic courtship area sequenced to date, we found males were differentiated from local juveniles but not from nesting females. In combination with tag data, this indicates possible male philopatry. The most common haplotypes detected at the study sites were CMA-08 and CMA-05, and significant temporal variation was not revealed. Although feeding grounds were differentiated overall, intra-regional structure was less pronounced. Ascension was the primary natal source of the study FGs, with Surinam and Trindade as secondary sources. The study clarified the primary connectivity between Trindade and Brazil. Possible linkages to African populations were considered, but there was insufficient resolution to conclusively determine this connection. The distribution of FG haplotype lineages was nonrandom and indicative of regional clustering. The study investigated impacts of population size, geographic distance, ocean currents, and juvenile natal homing on connectivity, addressed calls for increased genetic sampling in the southwestern Atlantic, and provided data important for conservation of globally endangered green turtles.


Asunto(s)
Migración Animal/fisiología , Genética de Población , Fenómenos de Retorno al Lugar Habitual/fisiología , Comportamiento de Nidificación/fisiología , Tortugas/genética , Factores de Edad , Animales , Océano Atlántico , Brasil , ADN Mitocondrial , Femenino , Variación Genética , Haplotipos , Masculino , Datos de Secuencia Molecular , Densidad de Población , Suriname , Trinidad y Tobago
3.
PLoS One ; 6(9): e24510, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21969858

RESUMEN

Where conservation resources are limited and conservation targets are diverse, robust yet flexible priority-setting frameworks are vital. Priority-setting is especially important for geographically widespread species with distinct populations subject to multiple threats that operate on different spatial and temporal scales. Marine turtles are widely distributed and exhibit intra-specific variations in population sizes and trends, as well as reproduction and morphology. However, current global extinction risk assessment frameworks do not assess conservation status of spatially and biologically distinct marine turtle Regional Management Units (RMUs), and thus do not capture variations in population trends, impacts of threats, or necessary conservation actions across individual populations. To address this issue, we developed a new assessment framework that allowed us to evaluate, compare and organize marine turtle RMUs according to status and threats criteria. Because conservation priorities can vary widely (i.e. from avoiding imminent extinction to maintaining long-term monitoring efforts) we developed a "conservation priorities portfolio" system using categories of paired risk and threats scores for all RMUs (n = 58). We performed these assessments and rankings globally, by species, by ocean basin, and by recognized geopolitical bodies to identify patterns in risk, threats, and data gaps at different scales. This process resulted in characterization of risk and threats to all marine turtle RMUs, including identification of the world's 11 most endangered marine turtle RMUs based on highest risk and threats scores. This system also highlighted important gaps in available information that is crucial for accurate conservation assessments. Overall, this priority-setting framework can provide guidance for research and conservation priorities at multiple relevant scales, and should serve as a model for conservation status assessments and priority-setting for widespread, long-lived taxa.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Extinción Biológica , Animales , Ecosistema , Femenino , Geografía , Cooperación Internacional , Masculino , Océanos y Mares , Riesgo , Medición de Riesgo , Especificidad de la Especie , Tortugas
4.
PLoS One ; 5(12): e15465, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-21253007

RESUMEN

BACKGROUND: Resolving threats to widely distributed marine megafauna requires definition of the geographic distributions of both the threats as well as the population unit(s) of interest. In turn, because individual threats can operate on varying spatial scales, their impacts can affect different segments of a population of the same species. Therefore, integration of multiple tools and techniques--including site-based monitoring, genetic analyses, mark-recapture studies and telemetry--can facilitate robust definitions of population segments at multiple biological and spatial scales to address different management and research challenges. METHODOLOGY/PRINCIPAL FINDINGS: To address these issues for marine turtles, we collated all available studies on marine turtle biogeography, including nesting sites, population abundances and trends, population genetics, and satellite telemetry. We georeferenced this information to generate separate layers for nesting sites, genetic stocks, and core distributions of population segments of all marine turtle species. We then spatially integrated this information from fine- to coarse-spatial scales to develop nested envelope models, or Regional Management Units (RMUs), for marine turtles globally. CONCLUSIONS/SIGNIFICANCE: The RMU framework is a solution to the challenge of how to organize marine turtles into units of protection above the level of nesting populations, but below the level of species, within regional entities that might be on independent evolutionary trajectories. Among many potential applications, RMUs provide a framework for identifying data gaps, assessing high diversity areas for multiple species and genetic stocks, and evaluating conservation status of marine turtles. Furthermore, RMUs allow for identification of geographic barriers to gene flow, and can provide valuable guidance to marine spatial planning initiatives that integrate spatial distributions of protected species and human activities. In addition, the RMU framework--including maps and supporting metadata--will be an iterative, user-driven tool made publicly available in an online application for comments, improvements, download and analysis.


Asunto(s)
Tortugas/genética , Animales , Conservación de los Recursos Naturales , Ecología , Ecosistema , Genética de Población , Geografía , Actividades Humanas , Humanos , Biología Marina , Modelos Genéticos , Telemetría/métodos
5.
J Hered ; 98(1): 29-39, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17158465

RESUMEN

Testing theories of dispersal is challenging in highly migratory species. In sea turtles, population size, geographic distance, natal homing, and ocean currents are hypothesized to affect dispersal. Little is known, however, about these mechanisms in sea turtles foraging along the South American coast. Green sea turtles feeding at Ubatuba (UB, n = 114) and Almofala (AF, n = 117), Brazil, were sequenced at the mitochondrial DNA (mtDNA) control region (486 bp) and genotyped at 7 microsatellite loci to test dispersal hypotheses. Fifteen mtDNA haplotypes were revealed, including a previously undescribed sequence, and the average observed heterozygosity (H(o)) was 76.4%. Overall short-term temporal differences were not detected, and differentiation was less pronounced in microsatellite than in mtDNA analyses. Mitochondrial results reveal significant differentiation between the Brazilian feeding grounds and most other Atlantic groups, whereas microsatellites uncover similarities to some of the geographically closest populations. Ubatuba and Almofala are mixed stocks, drawn primarily from Ascension, with lesser contributions from Surinam/Aves and Trindade. Costa Rica is also a significant source of individuals feeding at AF. The results are consistent with a model of juvenile natal homing impacted by other factors. Effective protection of turtles foraging along the extensive Brazilian coast may enhance breeding populations thousands of kilometers away.


Asunto(s)
Migración Animal , Genética de Población , Tortugas/genética , Animales , Brasil , ADN Mitocondrial/genética , Femenino , Variación Genética , Haplotipos/genética , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA