Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Cell Sci ; 126(Pt 13): 2845-56, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23613471

RESUMEN

Spatiotemporal regulation of mitotic kinase activity underlies the extensive rearrangement of cellular components required for cell division. One highly dynamic mitotic kinase is Aurora-B (AurB), which has multiple roles defined by the changing localisation of the chromosome passenger complex (CPC) as cells progress through mitosis, including regulation of cytokinesis and abscission. Like other mitotic kinases, AurB is a target of the anaphase-promoting complex (APC/C) ubiquitin ligase during mitotic exit, but it is not known if APC/C-mediated destruction plays any specific role in controlling AurB activity. We have examined the contribution of the Cdh1 coactivator-associated APC/C(Cdh1) to the organization of AurB activity as cells exit mitosis and re-enter interphase. We report that APC/C(Cdh1)-dependent proteolysis restricts a cell-cortex-associated pool of active AurB in space and time. In early G1 phase this pool of AurB is found at protrusions associated with cell spreading. AurB retention at the cortex depends on a formin, FHOD1, critically required to organize the cytoskeleton after division. We identify AurB phosphorylation sites in FHOD1 and show that phosphomutant FHOD1 is impaired in post-mitotic assembly of oriented actin cables. We propose that Cdh1 contributes to spatiotemporal organization of AurB activity and that organization of FHOD1 activity by AurB contributes to daughter cell spreading after mitosis.


Asunto(s)
Anafase/genética , Aurora Quinasa B/metabolismo , Proteínas Cdh1/metabolismo , Proteínas Fetales/metabolismo , Fase G1/genética , Proteínas Nucleares/metabolismo , Ubiquitina/metabolismo , Actinas/genética , Actinas/metabolismo , Aurora Quinasa B/genética , Proteínas Cdh1/genética , Línea Celular Tumoral , Movimiento Celular , Citoesqueleto/genética , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Proteínas Fetales/genética , Forminas , Regulación de la Expresión Génica , Humanos , Proteínas Nucleares/genética , Fosforilación , Proteolisis , Transducción de Señal , Factores de Tiempo , Imagen de Lapso de Tiempo , Ubiquitina/genética
2.
Life Sci Alliance ; 6(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36450448

RESUMEN

Mitotic kinase Aurora A (AURKA) diverges from other kinases in its multiple active conformations that may explain its interphase roles and the limited efficacy of drugs targeting the kinase pocket. Regulation of AURKA activity by the cell is critically dependent on destruction mediated by the anaphase-promoting complex (APC/CFZR1) during mitotic exit and G1 phase and requires an atypical N-terminal degron in AURKA called the "A-box" in addition to a reported canonical D-box degron in the C-terminus. Here, we find that the reported C-terminal D-box of AURKA does not act as a degron and instead mediates essential structural features of the protein. In living cells, the N-terminal intrinsically disordered region of AURKA containing the A-box is sufficient to confer FZR1-dependent mitotic degradation. Both in silico and in cellulo assays predict the QRVL short linear interacting motif of the A-box to be a phospho-regulated D-box. We propose that degradation of full-length AURKA also depends on an intact C-terminal domain because of critical conformational parameters permissive for both activity and mitotic degradation of AURKA.


Asunto(s)
Aurora Quinasa A , Bioensayo , Humanos , Aurora Quinasa A/genética , Núcleo Celular , Proteínas Cdh1
3.
J Cell Biol ; 219(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32236513

RESUMEN

How the cell rapidly and completely reorganizes its architecture when it divides is a problem that has fascinated researchers for almost 150 yr. We now know that the core regulatory machinery is highly conserved in eukaryotes, but how these multiple protein kinases, protein phosphatases, and ubiquitin ligases are coordinated in space and time to remodel the cell in a matter of minutes remains a major question. Cyclin B1-Cdk is the primary kinase that drives mitotic remodeling; here we show that it is targeted to the nuclear pore complex (NPC) by binding an acidic face of the kinetochore checkpoint protein, MAD1, where it coordinates NPC disassembly with kinetochore assembly. Localized cyclin B1-Cdk1 is needed for the proper release of MAD1 from the embrace of TPR at the nuclear pore so that it can be recruited to kinetochores before nuclear envelope breakdown to maintain genomic stability.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina B1/metabolismo , Cinetocoros/metabolismo , Poro Nuclear/metabolismo , Transducción de Señal/genética , Sistemas CRISPR-Cas , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Ciclina B1/genética , Exones , Edición Génica , Inestabilidad Genómica/genética , Células HeLa , Humanos , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Espectrometría de Masas , Mutación , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/fisiología , Huso Acromático/metabolismo
4.
Methods Cell Biol ; 144: 1-13, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29804664

RESUMEN

The spindle assembly checkpoint (SAC) is crucial to maintain genomic stability since it prevents premature separation of sister chromatids in mitosis and ensures the fidelity of chromosome segregation. The SAC arrests cells in mitosis and is not satisfied until all kinetochores are stably attached to the mitotic spindle. Improperly attached kinetochores activate the SAC and catalyze the formation of the mitotic checkpoint complex (MCC), containing Mad2, Cdc20, BubR1, and Bub3 proteins. The MCC binds and thereby inhibits the APC/C E3 ubiquitin ligase until the last kinetochore has attached to microtubules. Once the SAC is satisfied, the APC/C promptly activates and targets cyclin B1 and securin for degradation, thus allowing sister chromatids to separate and the cell to exit mitosis. Our understanding of SAC signaling has increased thanks to the development of new genetic, biochemical, molecular, and structural biology techniques. Here, we describe how live-cell imaging microscopy in combination with gene-targeting strategies and biochemical assays can be exploited to investigate the intrinsic properties of the SAC in mammalian cultured cells.


Asunto(s)
Bioensayo/métodos , Técnicas de Cultivo de Célula/métodos , Puntos de Control de la Fase M del Ciclo Celular , Fluorescencia , Humanos , Cinetocoros/metabolismo , Proteínas Luminiscentes , Microscopía
6.
Nat Genet ; 49(7): 1148-1151, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28553959

RESUMEN

Through exome sequencing, we identified six individuals with biallelic loss-of-function mutations in TRIP13. All six developed Wilms tumor. Constitutional mosaic aneuploidies, microcephaly, developmental delay and seizures, which are features of mosaic variegated aneuploidy (MVA) syndrome, were more variably present. Through functional studies, we show that TRIP13-mutant patient cells have no detectable TRIP13 and have substantial impairment of the spindle assembly checkpoint (SAC), leading to a high rate of chromosome missegregation. Accurate segregation, as well as SAC proficiency, is rescued by restoring TRIP13 function. Individuals with biallelic TRIP13 or BUB1B mutations have a high risk of embryonal tumors, and here we show that their cells display severe SAC impairment. MVA due to biallelic CEP57 mutations, or of unknown cause, is not associated with embryonal tumors and cells from these individuals show minimal SAC deficiency. These data provide insights into the complex relationships between aneuploidy and carcinogenesis.


Asunto(s)
Proteínas Portadoras/genética , Segregación Cromosómica/genética , Neoplasias Renales/genética , Puntos de Control de la Fase M del Ciclo Celular/genética , Tumor de Wilms/genética , ATPasas Asociadas con Actividades Celulares Diversas , Aneuploidia , Proteínas de Ciclo Celular/genética , Preescolar , ADN de Neoplasias/genética , Discapacidades del Desarrollo/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Leucemia Mieloide Aguda/genética , Microcefalia/genética , Proteínas Asociadas a Microtúbulos/genética , Mosaicismo , Mutación , Neoplasias Primarias Múltiples/genética , Proteínas Nucleares/genética , Neoplasias Ováricas/genética , Proteínas Serina-Treonina Quinasas/genética , Estabilidad del ARN/genética , Convulsiones/genética , Tumor de Células de Sertoli-Leydig/genética
7.
Leuk Res ; 36(8): 1028-34, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22521726

RESUMEN

The advantage of Aurora kinase (AK) inhibitors in chronic myeloid leukemia (CML) therapy mostly arises from "off-target" effects on tyrosine kinase (TK) activity of wild type (wt) or mutated Bcr-Abl proteins which drive the disease resistance to imatinib (IM). We proved that the AK inhibitor MK-0457 induces the growth arrest DNA damage-inducible (Gadd) 45a through recruitment of octamer-binding (Oct)-1 transcription factor at a critical promoter region for gene transcription and covalent modifications of histone H3 (lysine 14 acetylation, lysine 9 de-methylation). Such epigenetic chromatin modifications may depict a general mechanism promoting the re-activation of tumor suppressor genes silenced by Bcr-Abl.


Asunto(s)
Proteínas de Ciclo Celular/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Proteínas Nucleares/genética , Factor 1 de Transcripción de Unión a Octámeros/fisiología , Piperazinas/farmacología , Animales , Antineoplásicos/farmacología , Aurora Quinasas , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Epigénesis Genética/efectos de los fármacos , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Histonas/metabolismo , Humanos , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Ratones , Proteínas Nucleares/metabolismo , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Piperazinas/uso terapéutico , Regiones Promotoras Genéticas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Activación Transcripcional/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA