RESUMEN
The most common genetic risk factor for Parkinson's disease (PD) is heterozygous mutations GBA1, which encodes for the lysosomal enzyme, glucocerebrosidase. Reduced glucocerebrosidase activity associates with an accumulation of abnormal α-synuclein (α-syn) called Lewy pathology, which characterizes PD. PD patients heterozygous for the neuronotypic GBA1L444P mutation (GBA1+/L444P) have a 5.6-fold increased risk of cognitive impairments. In this study, we used GBA1+/L444P mice of either sex to determine its effects on lipid metabolism, expression of synaptic proteins, behavior, and α-syn inclusion formation. At 3 months of age, GBA1+/L444P mice demonstrated impaired contextual fear conditioning, and increased motor activity. Hippocampal levels of vGLUT1 were selectively reduced in GBA1+/L444P mice. We show, using mass spectrometry, that GBA1L444P expression increased levels of glucosylsphingosine, but not glucosylceramide, in the brains and serum of GBA1+/L444P mice. Templated induction of α-syn pathology in mice showed an increase in α-syn inclusion formation in the hippocampus of GBA1+/L444P mice compared with GBA1+/+ mice, but not in the cortex, or substantia nigra pars compacta. Pathologic α-syn reduced SNc dopamine neurons by 50% in both GBA1+/+ and GBA1+/L444P mice. Treatment with a GlcCer synthase inhibitor did not affect abundance of α-syn inclusions in the hippocampus or rescue dopamine neuron loss. Overall, these data suggest the importance of evaluating the contribution of elevated glucosylsphingosine to PD phenotypes. Further, our data suggest that expression of neuronotypic GBA1L444P may cause defects in the hippocampus, which may be a mechanism by which cognitive decline is more prevalent in individuals with GBA1-PD.SIGNIFICANCE STATEMENT Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are both pathologically characterized by abnormal α-synuclein (α-syn). Mutant GBA1 is a risk factor for both PD and DLB. Our data show the expression of neuronotypic GBA1L444P impairs behaviors related to hippocampal function, reduces expression of a hippocampal excitatory synaptic protein, and that the hippocampus is more susceptible to α-syn inclusion formation. Further, our data strengthen support for the importance of evaluating the contribution of glucosylsphingosine to PD phenotypes. These outcomes suggest potential mechanisms by which GBA1L444P contributes to the cognitive symptoms clinically observed in PD and DLB. Our findings also highlight the importance of glucosylsphingosine as a relevant biomarker for future therapeutics.
Asunto(s)
Glucosilceramidasa , Enfermedad de Parkinson , Sinucleinopatías , alfa-Sinucleína , Animales , Ratones , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Hipocampo/metabolismo , Mutación/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Sinucleinopatías/patologíaRESUMEN
A major challenge of lipidomics is to determine and quantify the precise content of complex lipidomes to the exact lipid molecular species. Often, multiple methods are needed to achieve sufficient lipidomic coverage to make these determinations. Multiplexed targeted assays offer a practical alternative to enable quantitative lipidomics amenable to quality control standards within a scalable platform. Herein, we developed a multiplexed normal phase liquid chromatography-hydrophilic interaction chromatography multiple reaction monitoring method that quantifies lipid molecular species across over 20 lipid classes spanning wide polarities in a single 20-min run. Analytical challenges such as in-source fragmentation, isomer separations, and concentration dynamics were addressed to ensure confidence in selectivity, quantification, and reproducibility. Utilizing multiple MS/MS product ions per lipid species not only improved the confidence of lipid identification but also enabled the determination of relative abundances of positional isomers in samples. Lipid class-based calibration curves were applied to interpolate lipid concentrations and guide sample dilution. Analytical validation was performed following FDA Bioanalytical Method Validation Guidance for Industry. We report repeatable and robust quantitation of 900 lipid species measured in NIST-SRM-1950 plasma, with over 700 lipids achieving inter-assay variability below 25%. To demonstrate proof of concept for biomarker discovery, we analyzed plasma from mice treated with a glucosylceramide synthase inhibitor, benzoxazole 1. We observed expected reductions in glucosylceramide levels in treated animals but, more notably, identified novel lipid biomarker candidates from the plasma lipidome. These data highlight the utility of this qualified lipidomic platform for enabling biological discovery.
Asunto(s)
Lipidómica , Espectrometría de Masas en Tándem , Animales , Cromatografía Liquida , Lípidos , Ratones , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodosRESUMEN
Mutations in the lysosomal enzyme glucocerebrosidase (GCase, GBA1 gene) are the most common genetic risk factor for developing Parkinson's disease (PD). GCase metabolizes the glycosphingolipids glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). Mutations in GBA1 reduce enzyme activity and the resulting accumulation of glycosphingolipids may contribute to the underlying pathology of PD, possibly via altering lysosomal function. While reduction of GCase activity exacerbates α-synuclein (α-syn) aggregation, it has not been determined that this effect is the result of altered glycosphingolipid levels and lysosome function or some other effect of altering GCase. The glycosphingolipid GlcCer is synthesized by a single enzyme, glucosylceramide synthase (GCS), and small molecule inhibitors (GCSi) reduce cellular glycosphingolipid levels. In the present studies, we utilize a preformed fibril (PFF) rodent primary neuron in vitro model of α-syn pathology to investigate the relationship between glycosphingolipid levels, α-syn pathology, and lysosomal function. In primary cultures, pharmacological inhibition of GCase and D409V GBA1 mutation enhanced accumulation of glycosphingolipids and insoluble phosphorylated α-syn. Administration of a novel small molecule GCSi, benzoxazole 1 (BZ1), significantly decreased glycosphingolipid concentrations in rodent primary neurons and reduced α-syn pathology. BZ1 rescued lysosomal deficits associated with the D409V GBA1 mutation and α-syn PFF administration, and attenuated α-syn induced neurodegeneration of dopamine neurons. In vivo studies revealed BZ1 had pharmacological activity and reduced glycosphingolipids in the mouse brain to a similar extent observed in neuronal cultures. These data support the hypothesis that reduction of glycosphingolipids through GCS inhibition may impact progression of synucleinopathy and BZ1 is useful tool to further examine this important biology.
Asunto(s)
Benzoxazoles/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Glucosilceramidasa/genética , Glucosiltransferasas/antagonistas & inhibidores , Glicoesfingolípidos/metabolismo , Lisosomas/efectos de los fármacos , Sinucleinopatías/metabolismo , alfa-Sinucleína/efectos de los fármacos , Animales , Neuronas Dopaminérgicas/metabolismo , Técnicas In Vitro , Lisosomas/metabolismo , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Cultivo Primario de Células , Agregado de Proteínas , Ratas , Sinucleinopatías/genética , alfa-Sinucleína/metabolismoRESUMEN
Multiple genome-wide association studies (GWAS) in Parkinson disease (PD) have identified a signal at chromosome 4p16.3; however, the causal variant has not been established for this locus. Deep investigation of the region resulted in one identified variant, the rs34311866 missense SNP (p.M393T) in TMEM175, which is 20 orders of magnitude more significant than any other SNP in the region. Because TMEM175 is a lysosomal gene that has been shown to influence α-synuclein phosphorylation and autophagy, the p.M393T variant is an attractive candidate, and we have examined its effect on TMEM175 protein and PD-related biology. After knocking down each of the genes located under the GWAS peak via multiple shRNAs, only TMEM175 was found to consistently influence accumulation of phosphorylated α-synuclein (p-α-syn). Examination of the p.M393T variant showed effects on TMEM175 function that were intermediate between the wild-type (WT) and knockout phenotypes, with reduced regulation of lysosomal pH in response to starvation and minor changes in clearance of autophagy substrates, reduced lysosomal localization, and increased accumulation of p-α-syn. Finally, overexpression of WT TMEM175 protein reduced p-α-syn, while overexpression of the p.M393T variant resulted in no change in α-synuclein phosphorylation. These results suggest that the main signal in the chromosome 4p16.3 PD risk locus is driven by the TMEM175 p.M393T variant. Modulation of TMEM175 may impact α-synuclein biology and therefore may be a rational therapeutic strategy for PD.
Asunto(s)
Enfermedad de Parkinson/genética , Polimorfismo de Nucleótido Simple , Canales de Potasio/genética , alfa-Sinucleína/metabolismo , Línea Celular , Cromosomas Humanos Par 4/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Lisosomas/metabolismo , Enfermedad de Parkinson/metabolismo , Fosforilación , Canales de Potasio/metabolismoRESUMEN
Deposition of hyperphosphorylated and aggregated tau protein in the central nervous system is characteristic of Alzheimer disease and other tauopathies. Tau is subject to O-linked N-acetylglucosamine (O-GlcNAc) modification, and O-GlcNAcylation of tau has been shown to influence tau phosphorylation and aggregation. Inhibition of O-GlcNAcase (OGA), the enzyme that removes O-GlcNAc moieties, is a novel strategy to attenuate the formation of pathologic tau. Here we described the in vitro and in vivo pharmacological properties of a novel and selective OGA inhibitor, MK-8719. In vitro, this compound is a potent inhibitor of the human OGA enzyme with comparable activity against the corresponding enzymes from mouse, rat, and dog. In vivo, oral administration of MK-8719 elevates brain and peripheral blood mononuclear cell O-GlcNAc levels in a dose-dependent manner. In addition, positron emission tomography imaging studies demonstrate robust target engagement of MK-8719 in the brains of rats and rTg4510 mice. In the rTg4510 mouse model of human tauopathy, MK-8719 significantly increases brain O-GlcNAc levels and reduces pathologic tau. The reduction in tau pathology in rTg4510 mice is accompanied by attenuation of brain atrophy, including reduction of forebrain volume loss as revealed by volumetric magnetic resonance imaging analysis. These findings suggest that OGA inhibition may reduce tau pathology in tauopathies. However, since hundreds of O-GlcNAcylated proteins may be influenced by OGA inhibition, it will be critical to understand the physiologic and toxicological consequences of chronic O-GlcNAc elevation in vivo. SIGNIFICANCE STATEMENT: MK-8719 is a novel, selective, and potent O-linked N-acetylglucosamine (O-GlcNAc)-ase (OGA) inhibitor that inhibits OGA enzyme activity across multiple species with comparable in vitro potency. In vivo, MK-8719 elevates brain O-GlcNAc levels, reduces pathological tau, and ameliorates brain atrophy in the rTg4510 mouse model of tauopathy. These findings indicate that OGA inhibition may be a promising therapeutic strategy for the treatment of Alzheimer disease and other tauopathies.
Asunto(s)
Inhibidores Enzimáticos/farmacología , Tauopatías/tratamiento farmacológico , Tauopatías/metabolismo , beta-N-Acetilhexosaminidasas/antagonistas & inhibidores , Proteínas tau/metabolismo , Animales , Atrofia/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/uso terapéutico , Locomoción/efectos de los fármacos , Masculino , Ratones , Células PC12 , Ratas , Tauopatías/patología , Tauopatías/fisiopatologíaRESUMEN
BACKGROUND: Alzheimer's disease (AD) is a chronic neurodegenerative disease with pathological hallmarks including the formation of extracellular aggregates of amyloid-beta (Aß) known as plaques and intracellular tau tangles. Coincident with the formation of Aß plaques is recruitment and activation of glial cells to the plaque forming a plaque niche. In addition to histological data showing the formation of the niche, AD genetic studies have added to the growing appreciation of how dysfunctional glia pathways drive neuropathology, with emphasis on microglia pathways. Genomic approaches enable comparisons of human disease profiles between different mouse models informing on their utility to evaluate secondary changes to triggers such as Aß deposition. METHODS: In this study, we utilized two animal models of AD to examine and characterize the AD-associated pathology: the Tg2576 Swedish APP (KM670/671NL) and TgCRND8 Swedish plus Indiana APP (KM670/671NL + V717F) lines. We used laser capture microscopy (LCM) to isolate samples surrounding Thio-S positive plaques from distal non-plaque tissue. These samples were then analyzed using RNA sequencing. RESULTS: We determined age-associated transcriptomic differences between two similar yet distinct APP transgenic mouse models, known to differ in proportional amyloidogenic species and plaque deposition rates. In Tg2576, human AD gene signatures were not observed despite profiling mice out to 15 months of age. TgCRND8 mice however showed progressive and robust induction of lysomal, neuroimmune, and ITIM/ITAM-associated gene signatures overlapping with prior human AD brain transcriptomic studies. Notably, RNAseq analyses highlighted the vast majority of transcriptional changes observed in aging TgCRND8 cortical brain homogenates were in fact specifically enriched within the plaque niche samples. Data uncovered plaque-associated enrichment of microglia-related genes such as ITIM/ITAM-associated genes and pathway markers of phagocytosis. CONCLUSION: This work may help guide improved translational value of APP mouse models of AD, particularly for strategies aimed at targeting neuroimmune and neurodegenerative pathways, by demonstrating that TgCRND8 more closely recapitulates specific human AD-associated transcriptional responses.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Corteza Cerebral/metabolismo , Citocinas/metabolismo , Regulación de la Expresión Génica/genética , Factores de Edad , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Animales , Proteínas de Unión al Calcio/metabolismo , Corteza Cerebral/patología , Correlación de Datos , Modelos Animales de Enfermedad , Humanos , Captura por Microdisección con Láser , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Mutación/genética , Placa Amiloide/patología , ARN Mensajero/metabolismo , TranscriptomaRESUMEN
Inhibition of microtubule affinity regulating kinase (MARK) represents a potentially attractive means of arresting neurofibrillary tangle pathology in Alzheimer's disease. This manuscript outlines efforts to optimize a pyrazolopyrimidine series of MARK inhibitors by focusing on improvements in potency, physical properties and attributes amenable to CNS penetration. A unique cylcyclohexyldiamine scaffold was identified that led to remarkable improvements in potency, opening up opportunities to reduce MW, Pgp efflux and improve pharmacokinetic properties while also conferring improved solubility.
Asunto(s)
Inhibidores Enzimáticos/síntesis química , Compuestos Heterocíclicos/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Cristalografía por Rayos X , Perros , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Compuestos Heterocíclicos/farmacología , Humanos , Concentración 50 Inhibidora , Peso Molecular , Ratas , SolubilidadRESUMEN
Male Anopheles mosquitoes coagulate their seminal fluids via cross-linking of a substrate, called Plugin, by the seminal transglutaminase AgTG3. Formation of the "mating plug" by cross-linking Plugin is necessary for efficient sperm storage by females. AgTG3 has a similar degree of sequence identity (~30%) to both human Factor XIII (FXIII) and tissue transglutaminase 2 (hTG2). Here we report the solution structure and in vitro activity for the cross-linking reaction of AgTG3 and Plugin. AgTG3 is a dimer in solution and exhibits Ca(2+)-dependent nonproteolytic activation analogous to cytoplasmic FXIII. The C-terminal domain of Plugin is predominantly α-helical with extended tertiary structure and oligomerizes in solution. The specific activity of AgTG3 was measured as 4.25 × 10(-2) units mg(-1). AgTG3 is less active than hTG2 assayed using the general substrate TVQQEL but has 8-10× higher relative activity when Plugin is the substrate. Mass spectrometric analysis of cross-linked Plugin detects specific peptides including a predicted consensus motif for cross-linking by AgTG3. These results support the development of AgTG3 inhibitors as specific and effective chemosterilants for A. gambiae.
Asunto(s)
Anopheles/enzimología , Transglutaminasas/química , Secuencia de Aminoácidos , Animales , Calcio/química , Reactivos de Enlaces Cruzados/química , Citoplasma/metabolismo , Dimerización , Femenino , Masculino , Espectrometría de Masas/métodos , Modelos Químicos , Datos de Secuencia Molecular , Péptidos/química , Unión Proteica , Proteína Glutamina Gamma Glutamiltransferasa 2 , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Transglutaminasas/metabolismoRESUMEN
Narcolepsy is caused by a loss of orexin/hypocretin signaling, resulting in chronic sleepiness, fragmented non-rapid eye movement sleep, and cataplexy. To identify the neuronal circuits underlying narcolepsy, we produced a mouse model in which a loxP-flanked gene cassette disrupts production of the orexin receptor type 2 (OX2R; also known as HCRTR2), but normal OX2R expression can be restored by Cre recombinase. Mice lacking OX2R signaling had poor maintenance of wakefulness indicative of sleepiness and fragmented sleep and lacked any electrophysiological response to orexin-A in the wake-promoting neurons of the tuberomammillary nucleus. These defects were completely recovered by crossing them with mice that express Cre in the female germline, thus globally deleting the transcription-disrupter cassette. Then, by using an adeno-associated viral vector coding for Cre recombinase, we found that focal restoration of OX2R in neurons of the tuberomammillary nucleus and adjacent parts of the posterior hypothalamus completely rescued the sleepiness of these mice, but their fragmented sleep was unimproved. These observations demonstrate that the tuberomammillary region plays an essential role in the wake-promoting effects of orexins, but orexins must stabilize sleep through other targets.
Asunto(s)
Antígenos de Superficie/metabolismo , Hipotálamo/metabolismo , Narcolepsia/prevención & control , Narcolepsia/fisiopatología , Receptores de Superficie Celular/metabolismo , Sueño/fisiología , Animales , Dependovirus/genética , Fenómenos Electrofisiológicos/efectos de los fármacos , Femenino , Área Hipotalámica Lateral/efectos de los fármacos , Área Hipotalámica Lateral/patología , Área Hipotalámica Lateral/fisiopatología , Hipotálamo/efectos de los fármacos , Hipotálamo/patología , Hipotálamo/fisiopatología , Integrasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología , Ratones , Ratones Transgénicos , Microinyecciones , Narcolepsia/patología , Neuropéptidos/farmacología , Receptores de Orexina , Orexinas , Transducción de Señal/efectos de los fármacos , Sueño/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Vigilia/efectos de los fármacos , Vigilia/fisiologíaRESUMEN
BACKGROUND: N-terminally truncated, pyroglutamate-modified amyloid-ß (Aß) peptides are major constituents of amyloid deposits in Alzheimer's disease (AD). METHODS: Using a newly developed ELISA for Aß modified at glutamate 3 with a pyroglutamate (pE3Aß), brain pE3Aß was characterized in human AD in an AD mouse model harboring double knock-in amyloid precursor protein (APP)-KM670/671NL and presenilin 1 (PS1)-P264L (APP/PS1-dKI) mutations, and in a second mouse model with transgenic overexpression of human APP695 with APP-KM670/671NL (Tg2576). RESULTS: pE3Aß increased in the AD brain versus age-matched controls, with pE3Aß/total Aß at 45 and 10%, respectively. Compared to controls, the AD brain demonstrated 8.5-fold increased pE3Aß compared to non-pE3Aß species, which increased 2.7-fold. In the APP/PS1-dKI brain, pE3Aß/total Aß increased from 7% at 3 months to 16 and 19% at 15 and 19 months, respectively. In Tg2576, pE3Aß/total Aß was only 1.5% at 19 months, suggesting that APP/PS1-dKI, despite less total Aß compared to Tg2576 at comparable ages, more closely mimics AD brain pathology. CONCLUSION: This report supports a significant role for pE3Aß in AD pathogenesis by confirming that pE3Aß represents a large fraction of Aß within the AD brain. Compared to the age-matched control brain, pE3Aß increased to a greater extent compared to Aß species without this N-terminal modification. Further, the APP/PS1-dKI model more closely resembles the AD brain in this regard, compared to the Tg2576 model.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/inmunología , Precursor de Proteína beta-Amiloide/genética , Animales , Anticuerpos , Ensayo de Inmunoadsorción Enzimática , Técnicas de Sustitución del Gen , Humanos , Ratones , Ratones Transgénicos , Presenilina-1/genética , Ácido Pirrolidona Carboxílico/químicaRESUMEN
Annotation of multiple regions of interest across the whole mouse brain is an indispensable process for quantitative evaluation of a multitude of study endpoints in neuroscience digital pathology. Prior experience and domain expert knowledge are the key aspects for image annotation quality and consistency. At present, image annotation is often achieved manually by certified pathologists or trained technicians, limiting the total throughput of studies performed at neuroscience digital pathology labs. It may also mean that simpler and quicker methods of examining tissue samples are used by non-pathologists, especially in the early stages of research and preclinical studies. To address these limitations and to meet the growing demand for image analysis in a pharmaceutical setting, we developed AnNoBrainer, an open-source software tool that leverages deep learning, image registration, and standard cortical brain templates to automatically annotate individual brain regions on 2D pathology slides. Application of AnNoBrainer to a published set of pathology slides from transgenic mice models of synucleinopathy revealed comparable accuracy, increased reproducibility, and a significant reduction (~ 50%) in time spent on brain annotation, quality control and labelling compared to trained scientists in pathology. Taken together, AnNoBrainer offers a rapid, accurate, and reproducible automated annotation of mouse brain images that largely meets the experts' histopathological assessment standards (> 85% of cases) and enables high-throughput image analysis workflows in digital pathology labs.
RESUMEN
Inhibition of glucosylceramide synthase (GCS) has been proposed as a therapeutic strategy for the treatment of Parkinson's Disease (PD), particularly in patients where glycosphingolipid accumulation and lysosomal impairment are thought to be contributing to disease progression. Herein, we report the late-stage optimization of an orally bioavailable and CNS penetrant isoindolinone class of GCS inhibitors. Starting from advanced lead 1, we describe efforts to identify an improved compound with a lower human dose projection, minimal P-glycoprotein (P-gp) efflux, and acceptable pregnane X receptor (PXR) profile through fluorine substitution. Our strategy involved the use of predicted volume ligand efficiency to advance compounds with greater potential for low human doses down our screening funnel. We also applied minimized electrostatic potentials (Vmin) calculations for hydrogen bond acceptor sites to rationalize P-gp SAR. Together, our strategies enabled the alignment of a lower human dose with reduced P-gp efflux, and favorable PXR selectivity for the discovery of compound 12.
RESUMEN
BACKGROUND: Estimation of the number and rate of deaths by age and sex is a key first stage for calculation of the burden of disease in order to constrain estimates of cause-specific mortality and to measure premature mortality in populations. We aimed to estimate life tables and annual numbers of deaths for 187 countries from 1970 to 2010. METHODS: We estimated trends in under-5 mortality rate (children aged 0-4 years) and probability of adult death (15-59 years) for each country with all available data. Death registration data were available for more than 100 countries and we corrected for undercount with improved death distribution methods. We applied refined methods to survey data on sibling survival that correct for survivor, zero-sibling, and recall bias. We separately estimated mortality from natural disasters and wars. We generated final estimates of under-5 mortality and adult mortality from the data with Gaussian process regression. We used these results as input parameters in a relational model life table system. We developed a model to extrapolate mortality to 110 years of age. All death rates and numbers have been estimated with 95% uncertainty intervals (95% UIs). FINDINGS: From 1970 to 2010, global male life expectancy at birth increased from 56·4 years (95% UI 55·5-57·2) to 67·5 years (66·9-68·1) and global female life expectancy at birth increased from 61·2 years (60·2-62·0) to 73·3 years (72·8-73·8). Life expectancy at birth rose by 3-4 years every decade from 1970, apart from during the 1990s (increase in male life expectancy of 1·4 years and in female life expectancy of 1·6 years). Substantial reductions in mortality occurred in eastern and southern sub-Saharan Africa since 2004, coinciding with increased coverage of antiretroviral therapy and preventive measures against malaria. Sex-specific changes in life expectancy from 1970 to 2010 ranged from gains of 23-29 years in the Maldives and Bhutan to declines of 1-7 years in Belarus, Lesotho, Ukraine, and Zimbabwe. Globally, 52·8 million (95% UI 51·6-54·1 million) deaths occurred in 2010, which is about 13·5% more than occurred in 1990 (46·5 million [45·7-47·4 million]), and 21·9% more than occurred in 1970 (43·3 million [42·2-44·6 million]). Proportionally more deaths in 2010 occurred at age 70 years and older (42·8% in 2010 vs 33·1% in 1990), and 22·9% occurred at 80 years or older. Deaths in children younger than 5 years declined by almost 60% since 1970 (16·4 million [16·1-16·7 million] in 1970 vs 6·8 million [6·6-7·1 million] in 2010), especially at ages 1-59 months (10·8 million [10·4-11·1 million] in 1970 vs 4·0 million [3·8-4·2 million] in 2010). In all regions, including those most affected by HIV/AIDS, we noted increases in mean ages at death. INTERPRETATION: Despite global and regional health crises, global life expectancy has increased continuously and substantially in the past 40 years. Yet substantial heterogeneity exists across age groups, among countries, and over different decades. 179 of 187 countries have had increases in life expectancy after the slowdown in progress in the 1990s. Efforts should be directed to reduce mortality in low-income and middle-income countries. Potential underestimation of achievement of the Millennium Development Goal 4 might result from limitations of demographic data on child mortality for the most recent time period. Improvement of civil registration system worldwide is crucial for better tracking of global mortality. FUNDING: Bill & Melinda Gates Foundation.
Asunto(s)
Salud Global , Esperanza de Vida/tendencias , Mortalidad/tendencias , Adolescente , Adulto , Mortalidad del Niño/tendencias , Preescolar , Femenino , Humanos , Lactante , Mortalidad Infantil/tendencias , Recién Nacido , Masculino , Persona de Mediana Edad , Factores de Riesgo , Adulto JovenRESUMEN
The pathogenesis and clinical heterogeneity of Parkinson's disease (PD) have been evaluated from molecular, pathophysiological, and clinical perspectives. High-throughput proteomic analysis of cerebrospinal fluid (CSF) opened new opportunities for scrutinizing this heterogeneity. To date, this is the most comprehensive CSF-based proteomics profiling study in PD with 569 patients (350 idiopathic patients, 65 GBA + mutation carriers and 154 LRRK2 + mutation carriers), 534 controls, and 4135 proteins analyzed. Combining CSF aptamer-based proteomics with genetics we determined protein quantitative trait loci (pQTLs). Analyses of pQTLs together with summary statistics from the largest PD genome wide association study (GWAS) identified 68 potential causal proteins by Mendelian randomization. The top causal protein, GPNMB, was previously reported to be upregulated in the substantia nigra of PD patients. We also compared the CSF proteomes of patients and controls. Proteome differences between GBA + patients and unaffected GBA + controls suggest degeneration of dopaminergic neurons, altered dopamine metabolism and increased brain inflammation. In the LRRK2 + subcohort we found dysregulated lysosomal degradation, altered alpha-synuclein processing, and neurotransmission. Proteome differences between idiopathic patients and controls suggest increased neuroinflammation, mitochondrial dysfunction/oxidative stress, altered iron metabolism and potential neuroprotection mediated by vasoactive substances. Finally, we used proteomic data to stratify idiopathic patients into "endotypes". The identified endotypes show differences in cognitive and motor disease progression based on previously reported protein-based risk scores.Our findings not only contribute to the identification of new therapeutic targets but also to shape personalized medicine in CNS neurodegeneration.
RESUMEN
Parkinson's disease is the second most prevalent progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Loss-of-function mutations in GBA, the gene that encodes for the lysosomal enzyme glucosylcerebrosidase, are a major genetic risk factor for the development of Parkinson's disease potentially through the accumulation of glucosylceramide and glucosylsphingosine in the CNS. A therapeutic strategy to reduce glycosphingolipid accumulation in the CNS would entail inhibition of the enzyme responsible for their synthesis, glucosylceramide synthase (GCS). Herein, we report the optimization of a bicyclic pyrazole amide GCS inhibitor discovered through HTS to low dose, oral, CNS penetrant, bicyclic pyrazole urea GCSi's with in vivo activity in mouse models and ex vivo activity in iPSC neuronal models of synucleinopathy and lysosomal dysfunction. This was accomplished through the judicious use of parallel medicinal chemistry, direct-to-biology screening, physics-based rationalization of transporter profiles, pharmacophore modeling, and use a novel metric: volume ligand efficiency.
RESUMEN
Mutations resulting in progranulin haploinsufficiency cause disease in patients with a subset of frontotemporal lobar degeneration; however, the biological functions of progranulin in the brain remain unknown. To address this subject, the present study initially assessed changes in gene expression and cytokine secretion in rat primary cortical neurons treated with progranulin. Molecular pathways enriched in the progranulin gene set included cell adhesion and cell motility pathways and pathways involved in growth and development. Secretion of cytokines and several chemokines linked to chemoattraction but not inflammation were also increased from progranulin-treated primary neurons. Therefore, whether progranulin is involved in recruitment of immune cells in the brain was investigated. Localized lentiviral expression of progranulin in C57BL/6 mice resulted in an increase of Iba1-positive microglia around the injection site. Moreover, progranulin alone was sufficient to promote migration of primary mouse microglia in vitro. Primary microglia and C4B8 cells demonstrated more endocytosis of amyloid ß1-42 when treated with progranulin. These data demonstrate that progranulin acts as a chemoattractant in the brain to recruit or activate microglia and can increase endocytosis of extracellular peptides such as amyloid ß.
Asunto(s)
Encéfalo/fisiología , Factores Quimiotácticos/fisiología , Endocitosis , Péptidos y Proteínas de Señalización Intercelular/fisiología , Microglía/fisiología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Proteínas de Unión al Calcio/metabolismo , Línea Celular Tumoral , Movimiento Celular , Factores Quimiotácticos/genética , Factores Quimiotácticos/farmacología , Citocinas/metabolismo , Endocitosis/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/farmacología , Ratones , Ratones Mutantes , Proteínas de Microfilamentos , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Progranulinas , RatasRESUMEN
Heterozygous mutations in the GBA1 gene - encoding lysosomal glucocerebrosidase (GCase) - are the most common genetic risk factors for Parkinson's disease (PD). Experimental evidence suggests a correlation between decreased GCase activity and accumulation of alpha-synuclein (aSyn). To enable a better understanding of the relationship between aSyn and GCase activity, we developed and characterized two mouse models that investigate aSyn pathology in the context of reduced GCase activity. The first model used constitutive overexpression of wild-type human aSyn in the context of the homozygous GCase activity-reducing D409V mutant form of GBA1. Although increased aSyn pathology and grip strength reductions were observed in this model, the nigrostriatal system remained largely intact. The second model involved injection of aSyn preformed fibrils (PFFs) into the striatum of the homozygous GBA1 D409V knock-in mouse model. The GBA1 D409V mutation did not exacerbate the pathology induced by aSyn PFF injection. This study sheds light on the relationship between aSyn and GCase in mouse models, highlighting the impact of model design on the ability to model a relationship between these proteins in PD-related pathology.
Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones , Mutación/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismoRESUMEN
Alzheimer's disease (AD) is a neurodegenerative disorder that causes early memory impairment, followed by profound progressive cognitive decline, and eventually death. Neurofibrillary tangles (NFTs) are one of the histopathological hallmarks of AD. NFTs are deposits of insoluble aggregates of the microtubule-binding protein tau, left behind following neuronal loss. Intracellular aggregates of tau, either in soluble or insoluble forms, are thought to disrupt cellular machinery and synaptic function and ultimately lead to neuronal death. As the ultimate pathological endpoint in AD is neuronal loss, there is significant interest in understanding the causes of tau aggregation and deposition in the brain as a potential therapeutic avenue for AD. Post-translational modifications on tau are thought to be an important regulatory mechanism that may contribute to the propensity of tau to aggregate and form NFTs. In addition to phosphorylation, numerous other post-translational modifications have been observed on tau protein. The mechanisms that cause aggregation of tau are unknown, but it is likely that post-translational modifications other than phosphorylation also regulate this process. This review will discuss several post-translational modifications of tau and their roles in modulation of tau function and aggregation in AD.
Asunto(s)
Enfermedad de Alzheimer , Procesamiento Proteico-Postraduccional/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Animales , Diseño de Fármacos , Humanos , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Ovillos Neurofibrilares/efectos de los fármacos , Ovillos Neurofibrilares/genética , Ovillos Neurofibrilares/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Procesamiento Proteico-Postraduccional/efectos de los fármacosRESUMEN
BACKGROUND: Mortality from cardiovascular and other chronic diseases has increased in Iran. Our aim was to estimate the effects of smoking and high systolic blood pressure (SBP), fasting plasma glucose (FPG), total cholesterol (TC), and high body mass index (BMI) on mortality and life expectancy, nationally and subnationally, using representative data and comparable methods. METHODS: We used data from the Non-Communicable Disease Surveillance Survey to estimate means and standard deviations for the metabolic risk factors, nationally and by region. Lung cancer mortality was used to measure cumulative exposure to smoking. We used data from the death registration system to estimate age-, sex-, and disease-specific numbers of deaths in 2005, adjusted for incompleteness using demographic methods. We used systematic reviews and meta-analyses of epidemiologic studies to obtain the effect of risk factors on disease-specific mortality. We estimated deaths and life expectancy loss attributable to risk factors using the comparative risk assessment framework. RESULTS: In 2005, high SBP was responsible for 41,000 (95% uncertainty interval: 38,000, 44,000) deaths in men and 39,000 (36,000, 42,000) deaths in women in Iran. High FPG, BMI, and TC were responsible for about one-third to one-half of deaths attributable to SBP in men and/or women. Smoking was responsible for 9,000 deaths among men and 2,000 among women. If SBP were reduced to optimal levels, life expectancy at birth would increase by 3.2 years (2.6, 3.9) and 4.1 years (3.2, 4.9) in men and women, respectively; the life expectancy gains ranged from 1.1 to 1.8 years for TC, BMI, and FPG. SBP was also responsible for the largest number of deaths in every region, with age-standardized attributable mortality ranging from 257 to 333 deaths per 100,000 adults in different regions. DISCUSSION: Management of blood pressure through diet, lifestyle, and pharmacological interventions should be a priority in Iran. Interventions for other metabolic risk factors and smoking can also improve population health.
RESUMEN
Synucleinopathies are neurodegenerative disorders involving pathological alpha-synuclein (αSyn) protein, including dementia with Lewy bodies, multiple system atrophy and Parkinson's disease (PD). Current in vivo models of synucleinopathy include transgenic mice overexpressing αSyn variants and methods based on administration of aggregated, exogenous αSyn. Combining these techniques offers the ability to study consequences of introducing pathological αSyn into primed neuronal environments likely to develop synucleinopathy. Herein, we characterize the impacts pre-formed fibrils (PFFs) of recombinant, human αSyn have in mice overexpressing human A30P αSyn, a mutation associated with autosomal dominant PD. A30P mouse brain contains detergent insoluble αSyn biochemically similar to PD brain, and these mice develop Lewy-like synucleinopathy with age. Administration of PFFs in A30P mice resulted in regionally-specific accumulations of phosphorylated synuclein, microglial induction and a motor phenotype that differed from PFF-induced effects in wildtype mice. Surprisingly, PFF-induced losses of tyrosine hydroxylase were similar in A30P and wildtype mice. Thus, the PFF-A30P model recapitulates key aspects of synucleinopathy with induction of microglia, creating an appropriate system for evaluating neurodegenerative therapeutics.