Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 118(23): 233602, 2017 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-28644642

RESUMEN

We investigate the temperature dependence of photon coherence properties through two-photon interference (TPI) measurements from a single quantum dot (QD) under resonant excitation. We show that the loss of indistinguishability is related only to the electron-phonon coupling and is not affected by spectral diffusion. Through these measurements and a complementary microscopic theory, we identify two independent separate decoherence processes, both of which are associated with phonons. Below 10 K, we find that the relaxation of the vibrational lattice is the dominant contribution to the loss of TPI visibility. This process is non-Markovian in nature and corresponds to real phonon transitions resulting in a broad phonon sideband in the QD emission spectra. Above 10 K, virtual phonon transitions to higher lying excited states in the QD become the dominant dephasing mechanism, this leads to a broadening of the zero phonon line, and a corresponding rapid decay in the visibility. The microscopic theory we develop provides analytic expressions for the dephasing rates for both virtual phonon scattering and non-Markovian lattice relaxation.

2.
ACS Nano ; 17(13): 12266-12277, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37366625

RESUMEN

In the semiconducting perovskite materials family, the cesium-lead-chloride compound (CsPbCl3) supports robust excitons characterized by a blue-shifted transition and the largest binding energy, thus presenting a high potential to achieve demanding solid-state room-temperature photonic or quantum devices. Here we study the fundamental emission properties of cubic-shaped colloidal CsPbCl3 nanocrystals (NCs), examining in particular individual NC responses using micro-photoluminescence in order to unveil the exciton fine structure (EFS) features. Within this work, NCs with average dimensions ⟨Lα⟩ ≈ 8 nm (α = x, y, z) are studied with a level of dispersity in their dimensions that allows disentangling the effects of size and shape anisotropy in the analysis. We find that most of the NCs exhibit an optical response under the form of a doublet with crossed polarized peaks and an average inter-bright-state splitting, ΔBB ≈ 1.53 meV, but triplets are also observed though being a minority. The origin of the EFS patterns is discussed in the frame of the electron-hole exchange model by taking into account the dielectric mismatch at the NC interface. The different features (large dispersity in the ΔBB values and occasional occurrence of triplets) are reconciled by incorporating a moderate degree of shape anisotropy, observed in the structural characterization, by preserving the relatively high degree of the NC lattice symmetry. The energy distance between the optically inactive state and the bright manifold, ΔBD, is also extracted from time-resolved photoluminescence measurements (ΔBD ≈ 10.7 meV), in good agreement with our theoretical predictions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA